第二章++++半导体二极管及其基本电路课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《第二章++++半导体二极管及其基本电路课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第二 半导体 二极管 及其 基本 电路 课件
- 资源描述:
-
1、第二章第二章 半导体二极管及其基本电路半导体二极管及其基本电路半导体基本知识PN结及其特性半导体二极管特性及其应用稳压二极管2.1 半导体基础知识半导体基础知识2.1.1 概念概念 根据物体导电能力(电阻率)的不同,来划分导体、绝缘体和半导体。1.导体:容易导电的物体。如:铁、铜等2.绝缘体:几乎不导电的物体。如:橡胶等3.半导体半导体 半导体是导电性能介于导体和绝缘体之间的物体。在一定条件下可导电。半导体的电阻率为10-3109 cm。典型的半导体有硅Si和锗Ge以及砷化镓GaAs等。半导体特点:1)在外界能源的作用下,导电性能显著变 化。光敏元件、热敏元件属于此类。2)在纯净半导体内掺入杂
2、质,导电性能显 著增加。二极管、三极管属于此类。2.1.2 本征半导体本征半导体1.1.本征半导体本征半导体化学成分纯净的半导体。化学成分纯净的半导体。制造半制造半导体器件的半导体材料的纯度要达到导体器件的半导体材料的纯度要达到99.9999999%,常称为常称为“九个九个9”。它在物理结构上呈单晶体形态。它在物理结构上呈单晶体形态。电子技术中用的最多的是硅硅和锗锗。硅硅和锗锗都是4价元素,它们的外层电子都是4个。其简化原子结构模型如下图:锗硅电子外层电子受原子核的束缚力最小,成为价电子。物质的性质是由价电子决定的。2.本征半导体的共价键结构本征半导体的共价键结构 本征晶体中各原子之间靠得很近
3、,使原分属于各原子的四个价电子同时受到相邻原子的吸引,分别与周围的四个原子的价电子形成共价键共价键。共价键中的价电子为这些原子所共有,并为它们所束缚,在空间形成排列有序的晶体。如下图所示:硅晶体的空间排列 共价键结构平面示意图共价键性质共价键性质 共价键上的两个电子是由相邻原子各用一个电子组成的,这两个电子被成为束缚电子。束缚电子同时受两个原子的约束,如果没有足够的能量,不易脱离轨道。因此,在绝对温度T=0K(-273 C)时,由于共价键中的电子被束缚着,本征半导体中没有自由电子,不导电。只有在激发下,本征半导体才能导电。3.3.电子与空穴电子与空穴+4+4+4+4自由电子空穴束缚电子共价键
4、当导体处于热力学温度0K时,导体中没有自由电子。当温度升高或受到光的照射时,价电子能量增高,有的价电子可以挣脱原子核的束缚,而参与导电,成为自由电子。这一现象称为本征激发,也称热激发。电子与空穴电子与空穴 自由电子产生的同时,在其原来的共价键中就出现了一个空位,原子的电中性被破坏,呈现出正电性,其正电量与电子的负电量相等,人们常称呈现正电性的这个空位为空穴。电子与空穴的复合电子与空穴的复合 可见因热激发而出现的自由电子和空穴是同时成对出现的,称为电子空穴对。游离的部分自由电子也可能回到空穴中去,称为复合,如图所示。本征激发和复合在一定温度下会达到动态平衡。本征激发和复合的过程(动画)空穴的移动
5、空穴的移动由于共价键中出现了空穴,在外加能源的激发下,邻近的价电子有可能挣脱束缚补到这个空位上,而这个电子原来的位置又出现了空穴,其它电子又有可能转移到该位置上。这样一来在共价键中就出现了电荷迁移电流。空穴在晶体中的移动(动画)电流的方向与电子移动的方向相反,与空穴移动的方向相同。本征半导体中,产生电流的根本原因是由于共价键中出现了空穴。由于空穴数量有限,所以其电阻率很大。2.1.3 2.1.3 杂质半导体杂质半导体 在本征半导体中掺入某些微量元素作为杂质,可使半导体的导电性发生显著变化。掺入的杂质主要是三价或五价元素。掺入杂质的本征半导体称为杂质半导体。(1)N型半导体(2)P型半导体1.1
6、.N型半导体型半导体 在本征半导体中掺入五价杂质元素,例如磷,可形成 N型半导体,也称电子型半导体。因五价杂质原子中只有四个价电子能与周围四个半导体原子中的价电子形成共价键,而多余的一个价电子因无共价键束缚而很容易形成自由电子。自由电子 在N型半导体中自由电子是多数载流子,它主要由杂质原子提供;另外,硅晶体由于热激发会产生少量的电子空穴对,所以空穴是少数载流子。N型半导体结构型半导体结构 提供自由电子的五价杂质原子因失去一个电子而带单位正电荷而成为正离子,因此五价杂质原子也称为施主杂质。N型半导体的结构示意图如下图所示。磷原子核自由电子所以,所以,N型半导体中的导电粒子有两种:型半导体中的导电
7、粒子有两种:自由电子自由电子多数载流子(由两部分组成)多数载流子(由两部分组成)空穴空穴少数载流子少数载流子2.P型半导型半导体体 在本征半导体中掺入三价杂质元素,如硼、镓、铟等形成了P型半导体,也称为空穴型半导体。因三价杂质原子在与硅原子形成共价键时,缺少一个价电子而在共价键中留下一个空穴。当相邻共价键上的电子因受激发获得能量时,就可能填补这个空穴,而产生新的空穴。空穴是其主要载流子。P型半导体结构型半导体结构 在P型半导体中,硼原子很容易由于俘获一个电子而成为一个带单位负电荷的负离子,三价杂质 因而也称为受主杂质。而硅原子的共价键由于失去一个电子而形成空穴。所以P型半导体的结构示意图如图所
8、示。硼原子核空穴P型半导体中:型半导体中:空穴是多数载流子空穴是多数载流子,主要由掺杂形成;主要由掺杂形成;电子是少数载流子,电子是少数载流子,由热激发形成。由热激发形成。3.3.杂质对半导体导电性的影响杂质对半导体导电性的影响 掺入杂 质对本征半导体的导电性有很大的影响,一些典型的数据如下:T=300 K室温下,本征硅的电子和空穴浓度:n=p=1.41010/cm31 2掺杂后 N 型半导体中的自由电子浓度:n=51016/cm3 本征硅的原子浓度:4.961022/cm3 3以上三个浓度基本上依次相差106/cm3。本节中的有关概念本节中的有关概念 本征半导体、杂质半导体本征半导体、杂质半
9、导体 自由电子、空穴自由电子、空穴 N型半导体、型半导体、P型半导体型半导体 多数载流子、少数载流子多数载流子、少数载流子 施主杂质、受主杂质施主杂质、受主杂质2.2 PN结及其特性结及其特性 PN结的形成 PN结的单向导电性PN结的电容效应1.PN结的形成结的形成 在一块本征半导体在两侧通过扩散不同的杂质,分别形成N型半导体和P型半导体。此时将在N型半导体和P型半导体的结合面上形成如下物理过程:因浓度差因浓度差多子扩散多子扩散形成空间电荷区形成空间电荷区促使少子漂移促使少子漂移阻止多子扩散阻止多子扩散扩散到对方的载流子在P区和N区的交界处附近被相互中和掉,使P区一侧因失去空穴而留下不能移动的
10、负离子,N区一侧因失去电子而留下不能移动的正离子。这样在两种半导体交界处逐渐形成由正、负离子组成的空间电荷空间电荷区(耗尽层)区(耗尽层)。由于P区一侧带负电,N区一侧带正电,所以出现了方向由N区指向P区的内电场内电场PN结的形成结的形成当扩散和漂移运动达到平衡后,空间电荷区的宽度和内电场电位就相对稳定下来。此时,有多少个多子扩散到对方,就有多少个少子从对方飘移过来,二者产生的电流大小相等,方向相反。因此,在相对平衡时,流过PN结的电流为0。内电场空间电荷区耗尽层电子空穴P区N区PN结的形成结的形成 对于P型半导体和N型半导体结合面,离子薄层形成的空间电荷区称为PN结。在空间电荷区,由于缺少多
11、子,所以也称耗尽层。由于耗尽层的存在,PN结的电阻很大。PN结的形成过程(动画)PN结的形成过程中的两种运动:多数载流子扩散 少数载流子飘移2.PN结的单向导电性结的单向导电性 PN结具有单向导电性,若外加电压使电流从P区流到N区,PN结呈低阻性,所以电流大;反之是高阻性,电流小。如果外加电压使PN结中:P区的电位高于N区的电位,称为加正向电压,简称正偏;P区的电位低于N区的电位,称为加反向电压,简称反偏。(1)PN结加正向电压时的导电情况结加正向电压时的导电情况 外加的正向电压有一部分降落在PN结区,方向与PN结内电场方向相反,削弱了内电场。于是,内电场对多子扩散运动的阻碍减弱,扩散电流加大
12、。扩散电流远大于漂移电流,可忽略漂移电流的影响,PN结呈现低阻性。PN结加正向电压时的导电情况(动画)内电场方向iD/mA1.00.50.51.00.501.0 D/VPN结的伏安特性结的伏安特性 低电阻低电阻 大的正向扩散电流大的正向扩散电流(2)PN结加反向电压时的导电情况结加反向电压时的导电情况 外加的反向电压方向与PN结内电场方向相同,加强了内电场。内电场对多子扩散运动的阻碍增强,扩散电流大大减小。此时PN结区的少子在内电场的作用下形成的漂移电流大于扩散电流,可忽略扩散电流,PN结呈现高阻性。PN结加反向电压时的导电情况(动画)内电场方向iD/mA1.00.5iD=IS0.51.00.
13、501.0 D/VPN结的伏安特性结的伏安特性 在一定的温度条件下,由本征激发决定的少子浓度是一定的,故少子形成的漂移电流是恒定的,基本上与所加反向电压的大小无关,这个电流也称为反向饱和电流。高电阻高电阻 很小的反向漂移电流很小的反向漂移电流(3)PN结的伏安特性结的伏安特性 PN结加正向电压时,呈现低电阻,具有较大的正向扩散电流;PN结加反向电压时,呈现高电阻,具有很小的反向漂移电流。由此可以得出结论:PN结具有单向导电性。VIFFOABC3.PN结方程结方程 根据理论分析,PN结两端的电压V与流过PN结的电流I之间的关系为:)(eIITVVS1-=其中:IS为PN结的反向饱和电流;VT称为
14、温度电压当量,在温度为300K(27C)时,VT约为26mV;所以上式常写为:)1-(=26mVVSeIIPN结方程结方程PN结正偏时,如果V VT 几倍以上,上式可改写为:即I随V按指数规律变化。mVVSeII26PN结反偏时,如果V VT几倍以上,上式可改写为:其中负号表示为反向。SII4.PN结的击穿特性结的击穿特性如图所示,当加在PN结上的反向电压增加到一定数值时,反向电流突然急剧增大,PN结产生电击穿电击穿这就是PN结的击穿特性。发生击穿时的反偏电压称为PN结的反向击穿电压VBR。VIFFOVBRPN结被击穿后,PN结上的压降高,电流大,功率大。当PN结上的功耗使PN结发热,并超过它
展开阅读全文