第6章++单纯形法的灵敏度分析与对偶课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《第6章++单纯形法的灵敏度分析与对偶课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 单纯 灵敏度 分析 对偶 课件
- 资源描述:
-
1、管管 理理 运运 筹筹 学学1第六章第六章 单纯形法的灵敏度分析与对偶单纯形法的灵敏度分析与对偶 1 1 单纯形表的灵敏度分析单纯形表的灵敏度分析 2 2 线性规划的对偶问题线性规划的对偶问题 3 3 对偶规划的基本性质对偶规划的基本性质 4 4 对偶单纯形法对偶单纯形法管管 理理 运运 筹筹 学学21 1 单纯形表的灵敏度分析单纯形表的灵敏度分析一、目标函数中变量Ck系数灵敏度分析1.在最终的单纯形表里,X k是非基变量 由于约束方程系数增广矩阵在迭代中只是其本身的行的初等变换与Ck没有任何关系,所以当Ck变成Ck+Ck时,在最终单纯形表中其系数的增广矩阵不变,又因为Xk是非基变量,所以基变
2、量的目标函数的系数不变,即CB不变,可知Zk也不变,只是Ck变成了Ck+Ck。这时 K=Ck-Zk就变成了Ck+Ck-Zk=K+Ck。要使原来的最优解仍为最优解,只要 K+Ck0即可,也就是Ck的增量 Ck-K。2.在最终的单纯形表中,X k是基变量 当Ck变成Ck+Ck时,最终单纯形表中约束方程的增广矩阵不变,但是基变量的目标函数的系数CB变了,则ZJ(J=1,2,.,N)一般也变了,不妨设CB=(CB1,CB2。,Ck,,CBm),当CB变成=(CB1,CB2。,Ck+Ck,CBm),则:ZJ=(CB1,CB2。,Ck,,CBm)(a1j,a2j,aKj ,amj)ZJ=(CB1,CB2。
3、,Ck+Ck,,CBm)(a1j,a2j,aKj ,amj)=ZJ+Ck aKj TT管管 理理 运运 筹筹 学学31 1 单纯形表的灵敏度分析单纯形表的灵敏度分析根据上式可知 检验数 J(J=1,2,.,M)变成了 J,有 J=CJ-ZJ=J+CK aKj。要使最优解不变,只要当J K时,J 0,就可求出 的取值范围,也就是使得第K个约束条件的对偶价格不变的bk的变化范围。,-1-1-1BXB.(bb)BbBb 。kbmkk3kk2kk1kk1-21kdb.dbdbdbbB,.D则mkkkdddmkk2kk1kk21BBdb.dbdb.XXBmBBXXX有新的最优解为管管 理理 运运 筹筹
4、学学121 1 单纯形表的灵敏度分析单纯形表的灵敏度分析下面我们仍以第二章例1在最终单纯形表上对bj 进行灵敏度分析。最终单纯形表如下所示:BkkX00bMax|0bMin|0BiBiikikikikxxdddd 要使也就是各个分量均不小于,用一个数学式子来表示 的允许变化范围是迭代次数基变量CBX1 X2 S1 S2 S3b50 100 0 0 02X1501 0 1 0 -150 S200 0 -2 1 150 X21000 1 0 0 1250 ZJ50 100 50 0 5027500CJ-ZJ0 0 -50 0 -50管管 理理 运运 筹筹 学学131 1 单纯形表的灵敏度分析单纯形
5、表的灵敏度分析 我们对b1进行灵敏度分析,因为在第一个约束方程中含有松弛变量S1,实际意义可以描述为:当设备台时数的对偶价格不变,都为每设备台时数在250与325之间变化,则设备台时数的对偶价格不变,都为每台设备台时50元。的第一列。就是),纯形表中的系数列(所以松弛变量在最终单-1TB021 变。约束条件的对偶价格不第一个即故有当而可以因为325bb250,25b50,250|Min500|Max,50X,50X,02d,01d11111212111iiBiiiBiddxddx管管 理理 运运 筹筹 学学141 1 单纯形表的灵敏度分析单纯形表的灵敏度分析三、约束方程系数矩阵A灵敏度分析下面
6、分两种情况讨论 1.在初始单纯形表上的变量Xk的系数列Pk改变为Pk经过迭代后,在最终单纯形表上Xk是非基变量。由于单纯形表的迭代是约束方程的增广矩阵的行变换,Pk变成Pk仅仅影响最终单纯形表上第k列数据,包括Xk的系数列、Zk以及 k,这时最终单纯形表上的Xk的系数列就变成了B-1Pj,而Zk就变成CBB-1Pk,新的检验数 k=Ck-CBB-1Pk。若 k0,则原最优解仍然为最优解。若 k 0,则继续进行迭代以求出最优。例例 以第二章例1为基础,设该厂除了生产,种产品外,现在试制成一个新产品,已知生产产品,每件需要设备2台时,并消耗A原料0.5公斤。B原料1.5公斤,获利150元,问该厂应
7、该生产该产品多少?解:这是一个增加新变量的问题。我们可以把它认为是一个改变变量X3在初始表上的系数列的问题,管管 理理 运运 筹筹 学学151 1 单纯形表的灵敏度分析单纯形表的灵敏度分析接上页.,0,25,150255.11005.050,5.125.05.15.02111010021PB)1.5,0.5,2()1.5,0.5,2()0,0,0(6666661-333TT见表题的最优解可知原最优解就是新问这时新变量如下表所示这时就变成了上是非基变量,在最终表之后的第六列上,显然把它放在的一列,上添上新的一列变量,。这样在原来的最终表变成从ZCZXSX迭代次数基变量CBX1 X2 S1 S2
8、S3 X3 b50 100 0 0 0 150X1501 0 1 0 -1 0.550 S200 0 -2 1 1 -250 X21000 1 0 0 1 1.5250 ZJ50 100 50 0 50 17527500CJ-ZJ0 0 -50 0 -50 -25管管 理理 运运 筹筹 学学161 1 单纯形表的灵敏度分析单纯形表的灵敏度分析例 假设上例题中产品的工艺结构有了改进,这时生产1件产品需要使用1.5台设备,消耗原料A为2千克,原料B为1千克,每件产品的利润为160元,问该厂的生产计划是否要修改。解:首先求出X3在最终表上的系数列 61PB填入下表,35,125100.5(50,0,
9、100),105.0125.1111010021PB66661ZCzj迭代次数基变量CBX1 X2 S1 S2 S3 X3 b50 100 0 0 0 1502X1501 0 1 0 -1 0.55050/0.5 S200 0 -2 1 1 050 X21000 1 0 0 1 1250250/1 ZJ50 100 50 0 50 12527500CJ-ZJ0 0 -50 0 -50 35管管 理理 运运 筹筹 学学171 1 单纯形表的灵敏度分析单纯形表的灵敏度分析接下来又可以有新的迭代S3进基,6310,3,XX由于可知此解不是最优解 我们要进行第 次迭代 选为入基变量,为出基变量迭代次数
10、基变量CBX1 X2 S1 S2 S3 X3 b50 100 0 0 0 1503X31602 0 2 0 -2 1100-S200 0 -2 1 1 05050/1 X2100-20 1 -2 0 3 0150250/3 ZJ120 100 120 0 -20 16031000CJ-ZJ-70 0 -120 0 20 0管管 理理 运运 筹筹 学学181 1 单纯形表的灵敏度分析单纯形表的灵敏度分析接上页 可知此规模的最优解X1=0,X2=0,S1=0,S2=0,S3=50,X3=200,此时,最大目标函数为32000元。也就是说,该厂的新的生产计划为不生产、产品,生产产品200件,可获得最
11、大利润32000元。迭代次数基变量CBX1 X2 S1 S2 S3 X3 b50 100 0 0 0 1504X31602 0 2 0 -2 1200-S300 0 -2 1 1 05050/1 X2100-2 1 4 -3 0 00250/3 ZJ120 100 80 20 0 16032000CJ-ZJ-70 0 -80 -20 0 0管管 理理 运运 筹筹 学学191 1 单纯形表的灵敏度分析单纯形表的灵敏度分析 2.在初始表上的变量XK的系数PK改变为PK,经过迭代后,在最终表上XK是基变量,在这种情况下原最优解的可行性和最优解都可能被破坏,问题十分复杂,一般不去修改原表而是直接计算。
12、管管 理理 运运 筹筹 学学201 1 单纯形表的灵敏度分析单纯形表的灵敏度分析四、增加一个约束条件的灵敏度分析 在原线性规划中增加一个约束条件时,先将原问题的最优解的变量值代入新增的约束条件,如满足则说明新增的条件没有起到限制作用,故原最优解不变,否则将新增的约束添入原最终单纯形表上进一步求解。下面仍以第三章例1为例来加以说明。例:假如该工厂除了在设备台时,原材料A、B上对该厂的生产有限制外,还有电力供应上的限制。最高供应电量为5000度,而生产一个产品需要用电10度,而生产一个产品需要用电30度。试分析此时该厂获得最大利润的生产计划?管管 理理 运运 筹筹 学学211 1 单纯形表的灵敏度
13、分析单纯形表的灵敏度分析 1x2x解:先将原问题的最优解=50=50,=250代入用电量的约束条件得:1050+30250=500+75005000,所以原题的最优解不是本题的最优解。在用电量的约束条件中加入松驰变量S4后得:12410 x+30 x +s =5000把这个约束条件加入到原最终单纯形表上,其中S4为基变量,得表如下:BC1x2x1s2s3s4s1x2s2x4sjz迭代迭代次数次数基变量基变量b b比值比值50501001000 00 00 00 050501 10 01 10 0-1-10 050500 00 00 0-2-21 11 10 050501001000 01 10
14、 00 01 10 02502500 0101030300 00 00 01 150005000505010010050500 050500 0275027500 00 00 0-50-500 0-50-500 0jjjcz1210305000 xx管管 理理 运运 筹筹 学学221 1 单纯形表的灵敏度分析单纯形表的灵敏度分析 在上表中的X1,X2不是单位向量,故进行行的线性变换,得迭代迭代次数次数基变量基变量C CB Bx x1 1x x2 2s s1 1s s2 2s s3 3s s4 4b b比值比值50501001000 00 00 00 0 x x1 150501 10 01 10
15、 0-1-10 05050s s2 20 00 00 0-2-21 11 10 05050 x x2 21001000 01 10 00 01 10 0250250s s4 40 00 00 0-10-100 0-20-201 1-3000-3000z zj j505010010050500 050500 027500275000 00 0-50-500 0-50-500 0把上表中的S4行的约束可以写为:13410203000sss 上式两边乘以(-1),再加上人工变量a1得:134110203000sssa用上式替换上表中的S4行,得下表:jjjcz管管 理理 运运 筹筹 学学231 1
16、单纯形表的灵敏度分析单纯形表的灵敏度分析迭代迭代次数次数基变基变量量x x1 1x x2 2s s1 1s s2 2s s3 3s s4 4a a1 1b b比值比值50501001000 00 00 00 0-M-Mx x1 150501 10 01 10 0-1-10 00 05050s s2 20 00 00 0-2-21 1(1)(1)0 00 05050 x x2 21001000 01 10 00 01 10 00 0250250s s4 4-M-M0 00 0-10-100 0-20-201 11 130003000z zj j505010010050-10M50-10M0 05
17、0-20M50-20M0 0-M-M0 00 010M-5010M-500 020M-5020M-500 00 0 x x1 150501 10 0-1-11 10 00 00 0100100s s3 30 00 00 0-2-21 11 10 00 05050 x x2 21001000 01 12 2-1-10 00 00 0200200s s4 4-M-M0 00 05050-20-200 0-1-11 120002000z zj j5050100100150-50M150-50M20M-5020M-500 0M M-M-M0 050M-15050M-15050-20M50-20M0 0
18、-M-M0 0 x x1 150501 10 00 03/53/50 0-1/50-1/501/501/50140140s s3 30 00 00 00 01/51/51 1-2/50-2/502/502/50130130 x x2 21001000 01 10 0-1/5-1/50 02/502/50-2/50-2/50120120s s4 40 00 00 01 1-2/5-2/50 0-1/50-1/501/501/504040z zj j50501001000 010100 03 3-3-30 00 0-10-100 0-3-3-M+3-M+3jjjczjjjczjjjcz管管 理理
展开阅读全文