第1讲-函数图象与性质及函数与方程课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《第1讲-函数图象与性质及函数与方程课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 函数 图象 性质 方程 课件
- 资源描述:
-
1、真题感悟真题感悟考点整合考点整合热点聚焦热点聚焦题型突破题型突破归纳总结归纳总结思维升华思维升华真题感悟真题感悟考点整合考点整合热点聚焦热点聚焦题型突破题型突破归纳总结归纳总结思维升华思维升华高考定位高考定位1.以分段函数、二次函数、指数函数、对数函数为载体,考查函数的定义域、最值与值域、奇偶性、单调性;2.利用图象研究函数性质、方程及不等式的解,综合性强;3.以基本初等函数为依托,考查函数与方程的关系、函数零点存在性定理.数形结合思想是高考考查函数零点或方程的根的基本方式.第第1讲函数图象与性质及函数与方程讲函数图象与性质及函数与方程真题感悟真题感悟考点整合考点整合热点聚焦热点聚焦题型突破题
2、型突破归纳总结归纳总结思维升华思维升华真真 题题 感感 悟悟1.(2017浙江卷)若函数f(x)x2axb在区间0,1上的最大值是M,最小值是m,则Mm()A.与a有关,且与b有关B.与a有关,但与b无关C.与a无关,但与b无关D.与a无关,但与b有关真题感悟真题感悟考点整合考点整合热点聚焦热点聚焦题型突破题型突破归纳总结归纳总结思维升华思维升华答案B真题感悟真题感悟考点整合考点整合热点聚焦热点聚焦题型突破题型突破归纳总结归纳总结思维升华思维升华A.2 B.4 C.6 D.8答案C真题感悟真题感悟考点整合考点整合热点聚焦热点聚焦题型突破题型突破归纳总结归纳总结思维升华思维升华3.(2017全国
3、卷)已知函数f(x)在(,)上单调递减,且为奇函数.若f(1)1,则满足1f(x2)1的x的取值范围是()A.2,2 B.1,1 C.0,4 D.1,3答案D真题感悟真题感悟考点整合考点整合热点聚焦热点聚焦题型突破题型突破归纳总结归纳总结思维升华思维升华真题感悟真题感悟考点整合考点整合热点聚焦热点聚焦题型突破题型突破归纳总结归纳总结思维升华思维升华答案B真题感悟真题感悟考点整合考点整合热点聚焦热点聚焦题型突破题型突破归纳总结归纳总结思维升华思维升华真题感悟真题感悟考点整合考点整合热点聚焦热点聚焦题型突破题型突破归纳总结归纳总结思维升华思维升华答案D真题感悟真题感悟考点整合考点整合热点聚焦热点聚
4、焦题型突破题型突破归纳总结归纳总结思维升华思维升华考考 点点 整整 合合1.函数的性质(1)单调性用来比较大小,求函数最值,解不等式和证明方程根的唯一性.常见判定方法:()定义法:取值、作差、变形、定号,其中变形是关键,常用的方法有:通分、配方、因式分解;()图象法;()复合函数的单调性遵循“同增异减”的原则;()导数法.(2)奇偶性:若f(x)是偶函数,那么f(x)f(x);若f(x)是奇函数,0在其定义域内,则f(0)0;奇函数在关于原点对称的区间内有相同的单调性,偶函数在关于原点对称的区间内有相反的单调性;真题感悟真题感悟考点整合考点整合热点聚焦热点聚焦题型突破题型突破归纳总结归纳总结思
5、维升华思维升华真题感悟真题感悟考点整合考点整合热点聚焦热点聚焦题型突破题型突破归纳总结归纳总结思维升华思维升华2.函数的图象(1)对于函数的图象要会作图、识图和用图,作函数图象有两种基本方法:一是描点法;二是图象变换法,其中图象变换有平移变换、伸缩变换和对称变换.(2)在研究函数性质特别是单调性、值域、零点时,要注意用好其与图象的关系,结合图象研究.真题感悟真题感悟考点整合考点整合热点聚焦热点聚焦题型突破题型突破归纳总结归纳总结思维升华思维升华3.求函数值域有以下几种常用方法:(1)直接法;(2)配方法;(3)基本不等式法;(4)单调性法;(5)求导法;(6)分离变量法.除了以上方法外,还有数
6、形结合法、判别式法等.4.函数的零点问题(1)函数F(x)f(x)g(x)的零点就是方程f(x)g(x)的根,即函数yf(x)的图象与函数yg(x)的图象交点的横坐标.(2)确定函数零点的常用方法:直接解方程法;利用零点存在性定理;数形结合,利用两个函数图象的交点求解.真题感悟真题感悟考点整合考点整合热点聚焦热点聚焦题型突破题型突破归纳总结归纳总结思维升华思维升华热点一函数性质的应用【例1】(1)(2017山东卷)已知f(x)是定义在R上的偶函数,且f(x4)f(x2).若当x3,0时,f(x)6x,则f(919)_.(2)(2017天津卷)已知奇函数f(x)在R上是增函数,g(x)xf(x)
7、.若ag(log25.1),bg(20.8),cg(3),则a,b,c的大小关系为()A.abc B.cbaC.bac D.bca真题感悟真题感悟考点整合考点整合热点聚焦热点聚焦题型突破题型突破归纳总结归纳总结思维升华思维升华真题感悟真题感悟考点整合考点整合热点聚焦热点聚焦题型突破题型突破归纳总结归纳总结思维升华思维升华答案(1)6(2)C真题感悟真题感悟考点整合考点整合热点聚焦热点聚焦题型突破题型突破归纳总结归纳总结思维升华思维升华探究提高(1)可以根据函数的奇偶性和周期性,将所求函数值转化为给出解析式的范围内的函数值.(2)利用函数的对称性关键是确定出函数图象的对称中心(对称轴).真题感悟
8、真题感悟考点整合考点整合热点聚焦热点聚焦题型突破题型突破归纳总结归纳总结思维升华思维升华真题感悟真题感悟考点整合考点整合热点聚焦热点聚焦题型突破题型突破归纳总结归纳总结思维升华思维升华答案(1)1(2)2真题感悟真题感悟考点整合考点整合热点聚焦热点聚焦题型突破题型突破归纳总结归纳总结思维升华思维升华热点二函数图象的问题命题角度1函数图象的变换与识别【例21】(1)(2017浙江诊断)已知f(x)2x1,g(x)1x2,规定:当|f(x)|g(x)时,h(x)|f(x)|;当|f(x)|g(x)时,h(x)g(x),则h(x)()A.有最小值1,最大值1B.有最大值1,无最小值C.有最小值1,无
展开阅读全文