电离辐射生物学效应基础课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《电离辐射生物学效应基础课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 电离 辐射生物学 效应 基础 课件
- 资源描述:
-
1、Ionizing radiation is ubiquitous.Air,water,soil,plants,animals,people,food,paper,machinery and buildings are radioactive.医学放射生物学医学放射生物学 研究研究电离辐射电离辐射对对机体机体(特别是人体)的各种细(特别是人体)的各种细胞、组织、器官和系统的胞、组织、器官和系统的作用规律和机理作用规律和机理的一门科学。为保障机体安全和健康,探索有效防护措施和提高临床放射治疗水平提供理论基础提供理论基础,使射线和核技术更好地为人类服务。第一节辐射生物学效应基本概念辐射生物效应 (b
2、iological effect of ionizing radiationbiological effect of ionizing radiation)电离辐射作用于机体后,其能量传递给机体的分子、细胞、组织和器官等基本生命物质和分子后,引起一系列复杂的物理、化学和生物学变化,由此所造成生物体组织细胞和生命各系统功能、调节和代谢的改变,产生各种生物学效应。电离辐射生物效应的种类电离辐射生物效应的种类 ICRP第60号建议书(1991)中,区分以下四个述语:变化变化:由辐射引起的某种生物学改变,可能有害,也可能无害;损伤损伤:表示某种程度的有害变化,这种损伤是指对细胞 有害,不一定是对受照射
3、的人体有害;损害损害:指临床上可观察到的有害效应,表现于 受照射的个体(躯体效应)或其后代(遗传效应);危害危害:是一个复杂的概念,它将损害的概率、严重程度 和显现时间结合起来加以考虑。u 辐射种类l按与物质作用分类:按与物质作用分类:电离辐射(Ionizing Radiation)非电离辐射(Non-Ionizing Radiation)l按本质和性质分类:按本质和性质分类:电磁辐射(Electromagnetic Radiation)粒子辐射(Particle Radiation)p电离辐射与非电离辐射电离辐射与非电离辐射 电离辐射是指一切能引起物质电离的辐射总称。p电磁辐射(无形)电磁辐
4、射(无形)以相互垂直的电场和磁场,随时间变化而交变振荡,形成向前运动的电磁波 电离辐射(如X射线和 射线)非电离辐射(如无线电波、微波等)p粒子辐射(有形)粒子辐射(有形)高能粒子通过消耗自身的动能把能量传递给其它物质 高速粒子、带电粒子电电磁辐辐射电离辐射电离辐射粒子辐辐射X,射线射线、中子、中子质子、负质子、负电磁辐射-波谱传能线密度 与 相对生物效应 重重 点点一、传能线密度一、传能线密度 (linear energy transfer,LET)定义:定义:带电电离粒子在其单位长度径迹单位长度径迹上消耗的平均能量平均能量(单位J/m)。LET概念也适用于虽不是直接电离粒子,但通过次级带电
5、粒子的X、射线和中子。与生物效应的关系:正相关正相关 二、二、相对生物效能相对生物效能 (elative biological effectiveness,RBE)RBE X或射线引起某一生物效应所需剂量引起某一生物效应所需剂量所观察的电离辐射引起相同生物引起相同生物效应所需剂量效应所需剂量(一)(一)RBE的含义的含义 l RBE的大小随所比较的剂量不同而有些差别,最好在平均灭活剂量或平均致死剂量下比较。l意义:意义:主要是为了比较在剂量相同时,不同种类的电离辐射引起某一特定效应的效率的差别。即:剂量相剂量相同、辐射种类不同,产生的效应也不同;若要产生相同、辐射种类不同,产生的效应也不同;若
6、要产生相同效应,则不同种类的辐射所需的剂量就不同同效应,则不同种类的辐射所需的剂量就不同。(二)(二)LET与与RBE的关系的关系 RBE的变化是的变化是LET的函数(正相关)的函数(正相关)LET:100kev/um时;LET继续增加,RBE反而下 降,表明更多的射线并不能用于 引起生物效应上,反而被浪费了 原发作用 与与 继发作用一、原初作用(primary effectprimary effect)l指从照射之时起到在细胞学上观察到可见损伤的这段时间内,在细胞中进行着辐射损伤的原初和强化过程原初和强化过程。包括物理、物理化学和化学物理、物理化学和化学三个阶段。此过程中辐射能量的吸收和传递
7、、分子的激发和电离激发和电离、自由基的产生、化学键的断裂等,都是在生物体内进行的。二、继发作用(secondary effectsecondary effect):是指在原发作用发生的基础上,因原发作用形成的各种活性基团不断攻击生命大分子,导致生物显微结构的破坏,继而发生一系列生物学、生物化学的损伤效应。继发反应:继发反应:亚细胞亚细胞结构的结构的破坏破坏细胞内水解细胞内水解酶的释放酶的释放信号转导网络信号转导网络的改变或破坏的改变或破坏代谢的方向性和代谢的方向性和协调性的紊乱协调性的紊乱生物化学损伤生物化学损伤细胞、组织器官细胞、组织器官和系统的变化和系统的变化病理学病理学改变改变功能变化功
8、能变化三、电离和激发Q 电离(作用)电离(作用)(ionization)生物组织分子被粒子或光子流撞击,轨道电子击出,产生自由电子和带正电荷的离子,即形成离子对,这一过程称为电离(作用)。电离(作用)。Q 激发作用激发作用(excitation)电离辐射与组织分子相互作用,能量不足以击出电子,而使轨道电子从低能级跃迁到较高能级轨道,分子处于激发态激发态。激发分子很不稳定,容易向邻近分子或原子释放能量。四、水的电离和激发 l水的原初辐解产物:水的原初辐解产物:电离辐射作用于机体的水分子水分子,使水分子发生电离和激发,产生自由基和分子。这种反应称水的辐解反应,各种自由基和分子统称水的原水的原初辐解
9、产物初辐解产物。l水合电子水合电子 游离的电子在碰撞过程中丧失其大部分能量,当其能量水平降至100eV以下而未被捕获时,可吸收若干水分子而形成水合电子。l刺团刺团 水的原初辐射反应并非平均分布于空间,一般是在小的体积内成簇发生的,这种小的反应体积小的反应体积称为刺团,平均半径为1.5nm,每个刺团内含有6个自由基。直接作用 与 间接作用重重 点点一、直接作用(direct effect)l概念:概念:电离辐射的能量直接沉积于生物大分子能量直接沉积于生物大分子,引起生物大分子的电离和激发,破坏机体的核酸、蛋白质、酶等具有生命功能的物质,这种直接由直接由射线造成的生物大分子损伤效应射线造成的生物大
10、分子损伤效应称为直接作用直接作用。l特点:特点:生物效应与辐射能量沉积发生于同一同一生物 大分子上。电离辐射对电离辐射对DNA分子损伤的直接作用分子损伤的直接作用直接作用直接作用二、间接作用(indirect effect)l概念:概念:电离辐射首先作用于水首先作用于水,使水分子产生一系列原初辐射分解产物原初辐射分解产物(H,OH,水合电子等),再作用于生物大分子再作用于生物大分子引起后者的物理和化学变化。l特点:特点:能量沉积和生物效应发生在不同分子不同分子电离辐射对电离辐射对DNA分子损伤的间接作用分子损伤的间接作用间接作用间接作用l电离辐射间接作用的四种效应1.稀释效应稀释效应(dilu
11、tion effect):指最大的相对效应发生在最稀释的溶液中。一定剂量的电离辐射在溶液中产生固定数量自由基,如果作用是间接的,那么失活的溶质分子数目就与溶液浓度无关,只与产生的自由基数量一致;若作用为直接的,则失活的溶质分子数将取决于受照溶液的溶质分子数,并与溶液浓度成正比。在稀释溶液系统中,间接作用间接作用占主要地位2.温度效应温度效应(temperature effect):指在一定实验条件下,受照射系统(如酶浓度)的辐射效应,随着周围温度升高而加重。因为温度升高,增加了自由基接近酶的机会,使酶分子损伤加重,反之亦然。对于恒温生物表面来讲(包括人体),通常条件下的照射所产生的辐射效应不受
12、环境温度变化的影响。3.防护效应防护效应(protective effect):指向受照射的生物系统中引入某种或某几种物质具有能降低该系统的损伤程度的作用。辐射防护剂辐射防护剂(radioprotectors):指有机体或某一种生物系统受辐照前或辐照后立 即给予某种物质,能减轻其辐射损伤,促进其修 复的物质。剂量降低系数剂量降低系数(dose reduction factor,DRF)DRF=有防护剂时,引起致死效应所需辐照剂量 无防护剂时,引起致死效应所需辐照剂量 表表4.5 WRWR27212721对正常组织的防护作用对正常组织的防护作用 被防护的组织被防护的组织 未被防护的组织未被防护的
13、组织 骨髓 (2.43)脑 免疫系统(1.83.4)脊髓 皮肤 (22.4)小肠 (1.82)结肠 (1.21.8)食道 (1.4)肾 (1.5)肝 (2.7)唾液腺 (2.0)睾丸 (2.1)4.氧效应氧效应(oxygen effect)氧效应氧效应:是指受照射的生物组织、细胞或生物大分子的辐射效应随周围介质中氧浓度周围介质中氧浓度升高而增加。氧+自由基 过氧化物自由基(R00)在有氧条件下细胞放射敏感性增高,增高的幅度与氧浓度有关。氧增强比氧增强比(oxygen enhancement radio,OEROER)是指缺氧条件下引起一定效应所需辐射剂量与有氧条件下引起同样效应所需辐射剂量的比
14、值。其公式是:OER=缺氧缺氧条件下产生一定效应的剂量 有氧有氧条件下产生同样效应的剂量 氧效应的发生机制氧效应的发生机制:氧具有双重作用。氧固定假说氧固定假说 :电离辐射在靶分子中诱发自由基,如果有氧存在,辐射产生的自由基迅速与氧分子结合,形成一种妨碍靶分子生物功能的集团 ROO。辐射 O2 R R ROO电子转移假说:电子转移假说:辐射靶分子游离电子(两种可能)回到靶分子原位自愈 转移到一个电子陷阱部位靶分子损伤l 氧浓度对氧效应的影响F有氧条件下细胞放射敏感性增高 F氧分压从0上升至1,放射敏感性迅速增加 增至21或至100时,敏感性处于坪值l 照射时间对氧效应的影响F照射前照射前引入氧
15、,表现出氧效应 F照射后照射后引入氧,无效 l氧效应生物学意义氧效应生物学意义:许多实体瘤细胞是乏氧的,因而对放射治疗有抗性,应用高压氧舱高压氧舱可以提高肿瘤细胞的氧合量,或者放疗前使用乏氧细胞增敏剂乏氧细胞增敏剂可以增加射线对肿瘤细胞的杀伤能力。自 由 基l自由基自由基(free radical):指含有一个或多个不配对电不配对电子子的原子、分子、离子或游离基团。l形成方式形成方式均裂(homolytic fission)l自由基的特性自由基的特性:l高反应性:高反应性:带有未配对电子,具有强烈的获取或失去电子以成为配对 电子的趋势,因此化学性质活泼l不稳定性:不稳定性:寿命短不稳定 l顺磁
16、性:顺磁性:当电子成对存在于同一轨道时,由于两个电子的自旋方向 相反,各自的相应磁矩相互抵消,对外不显示磁性。活性氧活性氧 氧化应激氧化应激 氧自由基氧自由基1.活性氧活性氧(reactive oxygen species,ROSROS):是指含有氧的活性物质,可能是氧的某些代谢产物和一些经过生化反应而产生的含氧基团。主要有以氧的单电子还原产物、氧的双电子还原产物、烷烃过氧化物ROOH、均裂产物RO,ROO、处于激发态的氧。2.氧化应激氧化应激(Oxidative Stress):是指具有活性的氧化中间产物(ROI)所引起的生物学反应称为氧化应激。3.氧自由基氧自由基(Oxygen free
17、radical):是指含有氧元素的自由基。氧自由基都是活性氧氧自由基都是活性氧,但活性氧不一定就是氧自由基。如处于单线激发状态的氧(1O2)虽不是自由基,但其活性很高,从生物学意义上来讲属于活性氧。常用氧自由基常用氧自由基符号符号中文名中文名英文名英文名超氧阴离子Superoxide anion radicalHO2 氢过氧基Hydrogen peroxide radicalHO羟自由基Hydroxyl radicalRO氧有机自由基Oxygen organic free radicalROO有机过氧基Organic peroxide radical1O2 单线态氧Singlet oxygen
18、L脂自由基Lipid free radicalLOO脂过氧基Lipid peroxide radical2O222O自由基对生命大分子的作用 1 1)抽氢反应:)抽氢反应:自由基将有机分子中的H转移至自身,形 成有机自由基。HO+RH R+H2O H +RH R+H2 2)2)加成反应:加成反应:自由基加入至不饱和有机分子中双键部位 的反应 H+RCH=CH2 RCH CH2 H 3)3)歧化反应:歧化反应:既有氧化作用又有还原作用的自由基,易于发生。发生在自由基或自由基与有机 分子之间的单电子转移反应。O2-+O2-+2H+H2O2+O2 O2-+H2O2 O2+OH+OH-4)链式反应链式
19、反应:在生物系统中脂质(RH)的过氢化就是 链式反应与支链反应。5)氧化还原反应氧化还原反应:O-2在水溶液中主要起还原剂作用,使细胞色素C还原;也可以使Vc氧化,产 生半脱氢抗坏血酸自由基。机体的抗氧化功能(一)抗氧化酶过氧化氢酶(catalase,CATCAT)硒谷胱甘肽过氧化物酶(selenium dependent glutathione peroxidase,SeGSHPxSeGSHPx)、磷脂氢过氧化物谷胱甘肽过氧化物酶(phospholipid hydroperoxide glutathione peroxidase,PHGSHPxPHGSHPx)谷胱甘肽转硫酶(nonseG S
20、HPXSHPX)超氧化物歧化酶(superoxide dismutase,SODSOD)非特异性过氧化物酶:(二)脂溶性抗(二)脂溶性抗氧氧化化剂剂维生素E 类胡萝卜素 泛醌 可消除1O2和2O阻断脂质过氧化作用 直接与活性氧起反应抑制脂质过氧化 可清除2O 可与脂自由基(L)或脂过氧基(LOO)反应(三)水溶性小分子抗氧化剂(三)水溶性小分子抗氧化剂维生素C(抗坏血酸)谷胱甘肽 2O2O与和HOH反应生成抗坏血酸自由基供氢体,同时也是OH2O的清除剂 H2O2和1(四)蛋白性抗(四)蛋白性抗氧氧化化剂剂l铜蓝蛋白铜蓝蛋白(ceruloplasmin)是人血浆的含铜蛋白,是细胞液的重要抗氧化剂
21、之一,其作用主要在于防止过渡金属Fe 2+和Cu 2+催化H2O2形成OH。l清蛋白清蛋白 结合的胆红素有效地清除 、和过氧基,还可以作为过氧化物酶还原H2O2和有机过氧化物的提氢体。21O2O 第二节辐射生物学效应的分类确定性效应 与 随机性效应重重 点点1.确定性效应确定性效应(deterministic effect):指发生生物效应的严重程度随着电离辐射剂量的增加而增加随着电离辐射剂量的增加而增加的生物效应。这种生物效应存在剂量阈值存在剂量阈值,只要照射剂量达到或超过剂量阈值效应肯定发生。如照射后的白细胞减少、白内障、皮肤红斑脱毛等辐射皮肤损伤均属于确定性效应。2.随机性效应随机性效应
22、(stochastic effect):指生物效应的发生概率(而不是其严重程度)与照射剂量的大小有关的生物效应。这种效应在个别细胞损伤(主要是突变)时即可出现,不存在剂量阈值不存在剂量阈值。如辐射致癌、遗传效应。外照射、内照射效应 局部照射、全身照射效应1.外照射外照射(external irradiation):辐射源从体外对机体进行的照射。射线、中子、X射线等穿透力强,外照射的生物学效应强。2.内照射内照射(internal irradiation):放射性核素通过各种途径进入机体,在机体内发射出射线产生的生物效应。内照射效应主要发生在放射性核素通过的途径和沉积部位的组织器官,但其效应可波
23、及全身。内照射效应一般以射程短、电离强的、射线为主。3.局部照射局部照射(local irradiation):当外照射的射线照射身体某一部位,引起局部组织的反应者称局部照射。当照射剂量和剂量率相同时,身体各部位的辐射敏感性依次为 腹部盆腔胸部头部四肢。4.全身照射全身照射(total body irradiation):当全身均匀地或非均匀地受到照射而产生全身效应时称全身照射。如照射剂量较小者为小剂量效应,如照射剂量较大者(1Gy)则发展为急性放射病。根据照射剂量大小和不同敏感组织的反应程度,辐射所致全身损伤分为骨髓型、肠型、脑型三种类型。躯体和遗传效应 近期与远期效应1.躯体效应躯体效应(
24、somatic effect):受照射个体体细胞损伤而致本身发生的各种效应称为躯体效应。又可区分为全身效应(total body effect)和局部效应(local effect)。如辐射所致的骨髓造血障碍、白内障等。2遗传效应遗传效应(genetic effect):受照射个体生殖细胞突变,而在子代身上表现出的效应称遗传效应。这是由于电离辐射造成受照者生殖细胞遗传物质的损伤,引起基因突变和染色体畸变,导致后代先天畸形、流产、死胎和某些遗传性疾病。1.近期效应近期效应(early effectearly effect)或者早期效应:或者早期效应:指电离辐射作用于生物机体后,辐射损伤效应在照射
25、后短期(数周内)就出现的那些效应。如急性放射病,急性皮肤损伤等。2.远期效应远期效应(late effectlate effect)或者远后效应:或者远后效应:指电离辐射作用于生物机体后,辐射损伤效应在照射后数月至数年才出现的那些效应(一般6个月以上)。如慢性放射病、致癌效应、放射性白内障、辐射遗传效应等。l 辐射旁效应辐射旁效应l电离辐射引起受照细胞损伤或功能激活,产生的损伤或激活信号可导致其共同培养的未受照射细胞未受照射细胞产生同样的损伤或激活效应,称辐射旁效应辐射旁效应。机制尽管不清楚,但与受照细胞产生的活性氧活性氧、细细胞因子胞因子和细胞间缝隙连接通信细胞间缝隙连接通信(GJIC)关系
展开阅读全文