理论力学07刚体的平面运动课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《理论力学07刚体的平面运动课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 理论 力学 07 刚体 平面 运动 课件
- 资源描述:
-
1、12例如:曲柄连杆机构中连杆AB的运动,A点作圆周运动,点作圆周运动,B点作直线运动点作直线运动,因此,AB 杆的运动既不是平动也不是定轴转动,而是平面运动3请看动画4 刚体的平面运动是工程上常见的一种运动,这是一种较为复杂的运动对它的研究可以在研究刚体的平动和定轴转动的基础上,通过运动合成和分解的方法,将平面运动分解为上述两种基本运动然后应用合成运动的理论,推导出平面运动刚体上一点的速度和加速度的计算公式7-1 刚体平面运动及其分解刚体平面运动及其分解一、平面运动的定义一、平面运动的定义 在运动过程中,刚体上任一点到某一固定平面的距离始终保持不变也就是说,刚体上任一点都在与该固定平面平行的某
2、一平面内运动具有这种特点的运动称为刚体的平面运动5 二平面运动的简化二平面运动的简化刚体的平面运动可以刚体的平面运动可以简化为平面图形简化为平面图形S在其自在其自身平面内的运动身平面内的运动即在研究平面运动时,不需考虑刚体的形状和尺寸,只需研究平面图形的运动,确定平面图形上各点的速度和加速度6 三平面运动方程三平面运动方程为了确定代表平面运动刚体的平面图形的位置,我们只需确定平面图形内任意一条线段的位置 任意线段AB的位置可用A点的坐标和AB与x轴夹角表示因此图形S 的位置决定于三个独立的参变量所以,AAyx7 四平面运动分解为平动和转动四平面运动分解为平动和转动 当图形上点不动时,则刚体作定
3、轴转动 当图形上 角不变时,则刚体作平动故刚体平面运动可以看成是平动和转动的合成运动,AAyx平面运动方程平面运动方程)(1tfxA)(2tfyA)(3tf对于每一瞬时 t,都可以求出对应的,图形S在该瞬时的位置也就确定了。8例如车轮的运动例如车轮的运动 车轮的平面运动可以看成是车轮随同车厢的平动和相对车厢的转动的合成 车轮对于静系的平面运动车轮对于静系的平面运动 (绝对运动)(绝对运动)车厢(动系车厢(动系Ax y )相对静系的平动相对静系的平动 (牵连运动)(牵连运动)车轮相对车厢(动系车轮相对车厢(动系Ax y)的转动)的转动 (相对运动)(相对运动)9 我们称动系上的原点为基点基点,于
4、是车轮的平面运动车轮的平面运动随基点随基点A的平动的平动绕基点绕基点A的转动的转动刚体的平面运动可以刚体的平面运动可以分解为随基点的平动分解为随基点的平动和绕基点的转动和绕基点的转动10再例如再例如:平面图形在时间内从位置I运动到位置II以A为基点:随基点A平动到AB后,绕基点转 角到AB以B为基点:随基点B平动到AB后,绕基点转 角到AB图中看出:AB AB AB,于是有21122121212010,;,limlimdtddtdtttt11 所以,平面运动随基点平动的运动规律与基平面运动随基点平动的运动规律与基点的选择有关,而绕基点转动的规律与基点选取点的选择有关,而绕基点转动的规律与基点选
5、取无关无关(即在同一瞬间,图形绕任一基点转动的 ,都是相同的)基点的选取是任意的基点的选取是任意的。(通常选取运动情况已知的点作为基点)12曲柄连杆机构曲柄连杆机构AB杆作平面运动杆作平面运动平面运动的分解平面运动的分解(请看动画)13 7-2平面图形上任意点速度的求法平面图形上任意点速度的求法根据速度合成定理,reavvv则点速度为:BAABvvv 一基点法(合成法)一基点法(合成法)取B为动点,则B点的运动可视为牵连运动为平动和相对运动为圆周运动的合成,ABAB方向大小 ,vv;vv;vvBArAeBa已知:图形S内一点A的速度,图形角速度求:指向与 转向一致取A为基点,将动系固结于A点,
6、动系作平动。AvBv14 由于A,B点是任意的,因此 表示了图形上任意两点速度间的关系由于恒有 ,因此将上式在AB上投影,有BAABvvvABvBA速度投影定理速度投影定理即 平面图形上任意两点的速度在该两点连线上的投影彼此相平面图形上任意两点的速度在该两点连线上的投影彼此相等等这种求解速度的方法称为 速度投影法速度投影法即平面图形上任一点的速度等于基点的速度与该点随图形绕平面图形上任一点的速度等于基点的速度与该点随图形绕基点转动的速度的矢量和基点转动的速度的矢量和这种求解速度的方法称为基点法基点法,也称为合成法合成法它是求解平面图形内一点速度的基本方法二速度投影法二速度投影法ABAABBev
7、ev15 三瞬时速度中心法(速度瞬心法)三瞬时速度中心法(速度瞬心法)1.问题的提出问题的提出 若选取速度为零的点作为基点,求解速度问题的计算会大大简化于是,自然会提出,在某一瞬时图形是否有一点速度等于零?如果存在的话,该点如何确定?所以反向恰与方向 .,AAPAvPAvAPv0Pv 速度瞬心的概念速度瞬心的概念 平面图形S,某瞬时其上一点A速度 ,图形角速度,沿 方向取半直线AL,然后顺 的转向转90o至AL的位置,在AL上取长度 则:/AvAPAvAvPAAPvvv16 即在某一瞬时必唯一存在一点速度等于零,该点称为平即在某一瞬时必唯一存在一点速度等于零,该点称为平面图形在该瞬时的瞬时速度
8、中心,简称速度瞬心面图形在该瞬时的瞬时速度中心,简称速度瞬心(是否会有两个速度瞬心?)(是否会有两个速度瞬心?)几种确定速度瞬心位置的方法几种确定速度瞬心位置的方法已知图形上一点的速度 和图形角速度,可以确定速度瞬心的位置(P点)且在 顺转向绕A点 转90的方向一侧,AAvAPvAPAvAv 已知一平面图形在固定面上作无滑动的滚 动,则图形与固定面的接触点P为速度瞬心 17ABvvvvaBABA ,)(同向与ABvvvvbBABA ,)(反向与 已知某瞬时图形上A,B两点速度 大小,且BAvv,ABvABvBA ,(b)(a)已知某瞬间平面图形上A,B两点速度 的方向,且 过A,B两点分别作速
9、度 的垂线,交点 P即为该瞬间的速度瞬心.BAvv,BAvv 不平行BAvv,(相对速度/相对距离)18另:对种(a)的情况,若vAvB,则是瞬时平动 已知某瞬时图形上A,B两点的速度方向相同,且不与AB连线 垂直 此时,图形的瞬心在无穷远处,图形的角速度=0,图形上各点速度相等,这种情况称为瞬时平动瞬时平动.(此时各点的加速度不相等)19 例如:曲柄连杆机构在图示位置时,连杆BC作瞬时平动此时连杆BC的图形角速度 ,BC杆上各点的速度都相等.但各点的加速度并不相等设匀,则)(2ABaanBB而的方向沿AC的,瞬时平动与平动不同瞬时平动与平动不同cacBaa 0BC20 纯滚动平面运动刚体在地
10、面上滚动的情况。假定与地面始终接触,接触点 C 处既不能相互离开、也不能相互侵彻,所以刚体上的接触点 C 的速度 一定沿接触处的切线方向、或者为零。当 不恒等于零、且接触点相对于刚体的位置不断改变时,刚体的运动称为有滑动的滚动;当当vC 0、且接触点相对于刚体的、且接触点相对于刚体的位置不断改变时,称刚体作无滑动的滚动位置不断改变时,称刚体作无滑动的滚动或纯滚动纯滚动。因此,纯滚动时,每一瞬时的接触点就是刚体的速度瞬心每一瞬时的接触点就是刚体的速度瞬心。实际中纯滚动的物体很多,如各种车轮在常规情况下就作纯滚动,因此纯滚动是刚体的一种重要运动形式21.速度瞬心法速度瞬心法利用速度瞬心求解平面图形
11、上点的速度的方法,称为速度瞬心法.平面图形在任一瞬时的运动可以视为绕速度瞬心的瞬时转动,速度瞬心又称为平面图形的瞬时转动中心。若P点为速度瞬心,则任意一点A的速度方向AP,指向与 一致。APvA.注意的问题注意的问题 速度瞬心在平面图形上的位置不是固定的,而是随时间不 断变化的。在任一瞬时是唯一存在的。速度瞬心处的速度为零,加速度不一定为零。不同于定轴转动 刚体作瞬时平动时,虽然各点的速度相同,但各点的加速 度是不一定相同的。不同于刚体作平动。22解:机构中,OA作定轴转动,AB作平面运 动,滑块B作平动。基点法(合成法)研究 AB,以 A为基点,且方向如图示。,lvAvvsin/llABvl
12、lvvllBAABABAAB/45ctgctg)(245sin/oo()例例1 已知:曲柄连杆机构OA=AB=l,曲柄OA以匀 转动。求:当=45时,滑块B的速度及AB杆的角速度根据,BAABvvv在点做 速度平行四边形,如图示。23)(2/,lBPvllAPvlAPlvABBAABA()试比较上述三种方法的特点。ABAABBvv根据速度投影定理sinBAvv)(245sin/sin/llvvABo不能求出AB 速度投影法 研究AB,方向OA,方向沿BO直线lvABv 速度瞬心法研究AB,已知的方向,因此可确定出P点为速度瞬心BAvv,247-3 平面图形上任意点加速度的求法平面图形上任意点加
13、速度的求法取A为基点,将平动坐标系固结于A点取B动点,则B点的运动分解为相对运动为圆周运动和牵连运动为平动nBABABArAeBaaaaaaaaa ;于是,由牵连平动时加速度合成定理可得如下公式reaaaanBABAABaaaa 一.基点法(合成法)已知:图形S 内一点A 的加速度 和图形 的,(某一瞬时)。求:该瞬时图形上任一点B的加速度。Aa25其中:,方向AB,指向与 一致;,方向沿AB,指向A点。ABaBA2ABanBA即平面图形内任一点的加速度等于基点的加速度与该点随图形绕绕基点转动的切向加速度和法向加速度基点转动的切向加速度和法向加速度的矢量和。这种求解加速度的方法称为基点法,也称
14、为合成法。是求解平面图形内一点加速度的基本方法。绕基点转动的切向加速度和法向加速度绕基点转动的切向加速度和法向加速度称为B 相对于 A 的加速度上述公式是一平面矢量方程。需知其中六个要素,方能求出其余两个。由于 方位总是已知,所以在使用该公式中,只要再知道四个要素,即可解出问题的待求量。nBABAaa,nBABAABaaaa 26nBABAaa,二加速度瞬心由于 的大小和方向随B点的不同而不同,所以总可以在图形内找到一点Q,在此瞬时,相对加速度 大小恰与基点A的加速度等值反向,其绝对加速度Q点就称为图形在该瞬时的加速度瞬心QAaAa0Qa注注 一般情况下,加速度瞬心与速度瞬心不是同一个点 一般
15、情况下,对于加速度没有类似于速度投影定理的关 系式.即一般情况下,图形上任意两点A,B的加速度ABBABAaa 若某瞬时图形=0,即瞬时平动,则有 即若平面图形在运动过程中某瞬时的角速度等于零,则该瞬时图形上任意两点的加速度在这两点连线上的投影相等 ABBABAaa27nBABAABaaaa加速度瞬心的确定将任一点加速度 分解为两个正交分量 和 ,由方程AanAaAa要使 ,必须0BaBAAaanBAnAaaABaaBAAABanA2所以有 与AB线的夹角:2tannAAaa结论:在与 正方向夹角为 的两条直线的某一条上,一定存在加速度瞬心加速度瞬心。Aa特别,当 时,即加速度瞬心在 所在的直
16、线上-类似匀速转动当 时,即加速度瞬心在垂直于 的直线上。此时加速度在连线方向上的投影相等类似速度投影定理0Aa00 90AaaA+anA28遗憾的是,即使求出加速度瞬心,并以加速度瞬心为基点,平面图形上其它点 的加速度一般仍然有两个分量 an DB和aD B,分析过程并不能得到实质性的简化。因此,平面运动的加速度分析一般只采用基点法,不推荐加速度瞬心法在某些特殊问题中,加速度瞬心方法可以使问题得到很多简化。比如图 7.10所示机构,图示瞬时,已知 OA 杆的角加速度,而角速度 =0,根据前面的结论,AB杆的加速度瞬心 C 为 a A、a B 垂线的交点,这样,AB 杆上任意点 D 的加速度a
17、 D就可以很容易被计算出来。29分析:大小?2 方向?故应先求出 nPOPOOPaaaa RvO/()例例1 半径为R的车轮沿直线作纯滚动,已知轮心O点的速度及加速度 ,求车轮与轨道接触点P的加速度OvOa解:轮O作平面运动,P为速度瞬心,30 由于此式在任何瞬时都成立,且O点作直线运动,故而RadtdvRdtdOO1()由此看出,速度瞬心P的加速度并不等于零,即它不是加速度瞬心当车轮沿固定的直线轨道作纯滚动时,其速度瞬心P的加速度指向轮心以O为基点,有 其中:做出加速度矢量图,由图中看出:(与 等值反向)即nPOPOOPaaaaRvRvRRaaRaOOnPOOPO222)(,nPOPaa O
18、aPOa)(/2RvaOP31解:(a)AB作平动,),(,nBnABABABAaaaaaavvBOAOBOaAOaBOvAOvBABA2122112211 ;/,/;/,/而又.;2121例例2 已知O1A=O2B,图示瞬时 O1A/O2B 试问(a),(b)两种情况下1和 2,1和2是否相等?(a)(b)32(b)AB作平面运动,图示瞬时作瞬时平动,此时BAABvv ,021221121,/,/,BOvAOvBOAOBAABnBABBABnAABAABBABAaaaaaa ,即cossincossin2222221111BOBOAOAOBAaaAB作瞬时平动时并由此看出即,ctg22121
展开阅读全文