模式识别绪论课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《模式识别绪论课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 模式识别 绪论 课件
- 资源描述:
-
1、引 言 课程对象 计算机应用技术专业本科、硕士研究生的专业基础课 电子科学与技术学科本科、硕士研究生的专业基础课 与模式识别相关的学科 统计学 概率论 线性代数(矩阵计算)形式语言 机器学习 人工智能 图像处理 计算机视觉 教学方法 着重讲述模式识别的基本概念,基本方法和算法原理。注重理论与实践紧密结合实例教学:通过大量实例讲述如何将所学知识运用到实际应用之中 避免引用过多的、繁琐的数学推导。教学目标 掌握模式识别的基本概念和方法 有效地运用所学知识和方法解决实际问题 为研究新的模式识别的理论和方法打下基础 题外话 基本:完成课程学习,通过考试,获得学分。提高:能够将所学知识和内容用于课题研究
2、,解决实际问题。飞跃:通过模式识别的学习,改进思维方式,为将来的工作打好基础,终身受益。教材/参考文献 R.Duda,P.Hart,D.Stork,Pattern Classification,second edition,2000(有中译本).蔡元龙,模式识别,西北电讯工程学院出版社,1986。边肇祺,模式识别(第二版),清华大学出版社,2000。齐敏,模式识别导论,清华大学出版社,2009。孙亮,禹晶,模式识别原理,北京工业大学出版社,2009。机构、会议、刊物 1973年 IEEE发起了第一次关于模式识别的国际会议“ICPR”(此后两年一次),成立了国际模式识别协会-“IAPR”1977
3、年IEEE成立PAMI委员会,创立IEEE Trans.on PAMI,并支持ICCV,CVPR两个会议 其他刊物 Pattern Recognition(PR)Pattern Recognition Letters(PRL)Pattern Analysis and Application(PAA)International Journal of Pattern Recognition and Artificial Intelligence(IJPRAI)第一章 模式识别概论什么是模式(Pattern)?什么是模式?广义地说,存在于时间和空间中可观察的物体,如果我们可以区别它们是否相同或是否相
4、似,都可以称之为模式。宏观的认为,客观事物的主观(符号化)表征既可以称为模式。模式所指的不是事物本身,而是从事物获得的信息,因此,模式往往表现为具有时间和空间分布的信息。模式的直观特性:可观察性 可区分性 相似性模式识别的概念 模式识别 直观,无所不在,“人以类聚,物以群分”周围物体的认知:桌子、椅子 人的识别:张三、李四 声音的辨别:汽车、火车,狗叫、人语 气味的分辨:炸带鱼、红烧肉 人和动物的模式识别能力是极其平常的,但对计算机来说却是非常困难的。模式识别的研究 目的:利用计算机对物理对象进行分类,在错误概率最小的条件下,使识别的结果尽量与客观物体相符合。Y=F(X)X的定义域取自特征集Y
5、的值域为类别的标号集F是模式识别的判别方法模式识别简史 1929年 G.Tauschek发明阅读机,能够阅读0-9的数字。30年代 Fisher提出统计分类理论,奠定了统计模式识别的基础。50年代 Noam Chemsky 提出形式语言理论傅京荪 提出句法结构模式识别。60年代 L.A.Zadeh提出了模糊集理论,模糊模式识别方法得以发展和应用。80年代以Hopfield网、BP网为代表的神经网络模型导致人工神经元网络复活,并在模式识别得到较广泛的应用。90年代小样本学习理论,支持向量机也受到了很大的重视。模式识别的应用(举例)生物学 自动细胞学、染色体特性研究、遗传研究 天文学 天文望远镜图
6、像分析、自动光谱学 经济学 股票交易预测、企业行为分析 医学 心电图分析、脑电图分析、医学图像分析模式识别的应用(举例)工程 产品缺陷检测、特征识别、语音识别、自动导航系统、污染分析 军事 航空摄像分析、雷达和声纳信号检测和分类、自动目标识别 安全 指纹识别、人脸识别、监视和报警系统模式识别方法 模式识别系统的目标:在特征空间和解释空间之间找到一种映射关系,这种映射也称之为假说。特征空间:从模式得到的对分类有用的度量、属性或基元构成的空间。解释空间:将c个类别表示为其中 为所属类别的集合,称为解释空间。假说的两种获得方法 监督学习、概念驱动或归纳假说:在特征空间中找到一个与解释空间的结构相对应
7、的假说。在给定模式下假定一个解决方案,任何在训练集中接近目标的假说也都必须在“未知”的样本上得到近似的结果。依靠已知所属类别的的训练样本集,按它们特征向量的分布来确定假说(通常为一个判别函数),只有在判别函数确定之后才能用它对未知的模式进行分类;对分类的模式要有足够的先验知识,通常需要采集足够数量的具有典型性的样本进行训练。假说的两种获得方法(续)非监督学习、数据驱动或演绎假说:在解释空间中找到一个与特征空间的结构相对应的假说。这种方法试图找到一种只以特征空间中的相似关系为基础的有效假说。在没有先验知识的情况下,通常采用聚类分析方法,基于“物以类聚”的观点,用数学方法分析各特征向量之间的距离及
8、分散情况;如果特征向量集聚集若干个群,可按群间距离远近把它们划分成类;这种按各类之间的亲疏程度的划分,若事先能知道应划分成几类,则可获得更好的分类结果。模式分类的主要方法 数据聚类 统计分类 结构模式识别 神经网络数据聚类 目标:用某种相似性度量的方法将原始数据组织成有意义的和有用的各种数据集。是一种非监督学习的方法,解决方案是数据驱动的。统计分类 基于概率统计模型得到各类别的特征向量的分布,以取得分类的方法。特征向量分布的获得是基于一个类别已知的训练样本集。是一种监督分类的方法,分类器是概念驱动的。结构模式识别 该方法通过考虑识别对象的各部分之间的联系来达到识别分类的目的。识别采用结构匹配的
展开阅读全文