书签 分享 收藏 举报 版权申诉 / 143
上传文档赚钱

类型植物生长调节剂讲座农业植保化控课件.ppt

  • 上传人(卖家):晟晟文业
  • 文档编号:4503360
  • 上传时间:2022-12-15
  • 格式:PPT
  • 页数:143
  • 大小:3.22MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《植物生长调节剂讲座农业植保化控课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    植物 生长 调节剂 讲座 农业 植保 课件
    资源描述:

    1、2022-12-15植物生长调节剂讲座农业植保化控植物生长调节剂讲座农植物生长调节剂讲座农业植保化控业植保化控植物生长调节剂讲座农业植保化控植物生长物质(plant growth substances)是调节植物生长发育的微量化学物质。它可分为两类:植物激素和植物生长调节剂。植物激素(plant hormones,phytohormones)是指在植物体内合成的、通常从合成部位运往作用部位、对植物的生长发育产生显著调节作用的微量小分子有机质。有五大类植物激素得到大家公认,它们是:生长素类(IAA)、赤霉素类(GA)、细胞分裂素类(CTK)、脱落酸(ABA)和乙烯(ETH)。植物生长调节剂讲座农

    2、业植保化控植物生长调节剂一些具有类似于植物激素活性的人工合成的物质。如油菜花粉中的油菜素内酯,苜蓿中的三十烷醇,菊芋叶中的菊芋素,半支莲叶中的半支莲醛(potulai),罗汉松中的罗汉松内酯(p o d o l a c t o n e),月 光 花 叶 中 的 月 光 花 素(colonyctin),还有广泛存在的多胺类化合物等都能调节植物的生长发育。此外,还有一些天然的生长抑制物质,如植物各器官中都存在的茉莉酸、茉莉酸甲酯、酚类物质中的酚酸和肉桂酸族以及苯醌中的胡桃醌等。已有人建议将油菜素甾体类和茉莉酸类也归到植物激素中。随着研究的深入,人们将更深刻地了解这些物质在植物生命活动中所起的生理作

    3、用。植物生长调节剂讲座农业植保化控9 9大类植物激素大类植物激素植物生长调节剂讲座农业植保化控第一节第一节 生长素类(生长素类(IAAIAA)一、生长素的发现和种类生长素(auxin)是最早被发现的植物激素,1880年达尔文(Darwin)父子利用胚芽鞘进行向光性实验,发现在单侧光照射下,胚芽鞘向光弯曲;如果切去胚芽鞘的尖端或在尖端套以锡箔小帽,单侧光照便不会使胚芽鞘向光弯曲;如果单侧光线只照射胚芽鞘尖端而不照射胚芽鞘下部,胚芽鞘还是会向光弯曲。植物生长调节剂讲座农业植保化控 图图 7-27-2导致生长导致生长素发现的向光性素发现的向光性实验实验A.达 尔 文 父 子(1880)的实验 B.博

    4、 伊 森 詹 森(1913)的实验 C.帕尔(1919)的实验 D.温特的实验博伊森詹森(BoysenJensen,1913)在向光或背光的胚芽鞘一面插入不透物质的云母片,他们发现只有当云母片放入背光面时,向光性才受到阻碍。如在切下的胚芽鞘尖和胚芽鞘切口间放上一明胶薄片,其向光性仍能发生(图7-2B)。帕尔(Pal,1919)发现,将燕麦胚芽鞘尖切下,把它放在切口的一边,即使不照光,胚芽鞘也会向一边弯曲(图7-2C)。植物生长调节剂讲座农业植保化控荷兰的温特(F.W.Went,1926)把燕麦胚芽鞘尖端切下,放在琼胶薄片上,约1 h后,移去芽鞘尖端,将琼胶切成小块,然后把这些琼胶小块放在去顶胚

    5、芽鞘一侧,置于暗中,胚芽鞘就会向放琼胶的对侧弯曲(图7-2D)。这证明促进生长的影响可从鞘尖传到琼胶,再传到去顶胚芽鞘,这种影响与某种促进生长的化学物质有关,温特将这种物质称为生长素。植物生长调节剂讲座农业植保化控 根据这个原理,温特创立了植物激素的一种生物鉴定法燕麦试法(avena test),即用低浓度的生长素处理燕麦芽鞘的一侧,引起这一侧的生长速度加快,而向另一侧弯曲,其弯曲度与所用的生长素浓度在一定范围内成正比,以此定量测定生长素含量,推动了植物激素的研究。1934年,荷兰的科戈(F.Kogl)等人从人尿、根霉、麦芽中分离和纯化了一种刺激生长的物质,经鉴定为吲哚乙酸(indole-3-

    6、acetic acid,IAA),C10H9O2N,分子量为175.19。从此,IAA就成了生长素的代号。图19.1生长素研究早期实验的总结植物生长调节剂讲座农业植保化控图图7-3 7-3 的生长物质的生长物质(A)(A)和抗生长素类物质和抗生长素类物质(B)(B)除IAA外,还在大麦、番茄、烟草及玉米等植物中先后发现苯乙酸(phenylactic acid,PAA)、4-氯吲哚乙酸(4-chloroindole-3-acetic acid,4-Cl-IAA)及吲哚丁酸(indole-3-butyric cid,IBA)等天然化合物,它们都不同程度的具有类似于生长素的生理活性。以后人工合成了种

    7、生长素类的植物生长调节剂,如2,4-D、萘乙酸等(图7-3A)。植物生长调节剂讲座农业植保化控二、生长素的代谢 1.1.分布分布 各种器官中都有生长素的分布,但较集中在生长旺盛的部位 如正在生长的茎尖和根尖(图7-4),正在展开的叶片、胚、幼嫩的果实和种子,禾谷类的居间分生组织等,衰老的组织或器官中生长素的含量则更少。图图7-4 7-4 黄化燕麦幼苗中生长素的分布黄化燕麦幼苗中生长素的分布(一(一)生长素的分布与运生长素的分布与运输输植物生长调节剂讲座农业植保化控 2.2.运输运输 生长素在植物体内的运输具有极性,即生长素只能从植物的形态学上端向下端运输,而不能向相反的方向运输,这称为生长素的

    8、极性运输(polar transport)。其它植物激素则无此特点。生长素的极性运输与植物的发育有密切的关系,如扦插枝条不定根形成时的极性和顶芽产生的生长素向基运输所形成的顶端优势等。对植物茎尖用人工合成的生长素处理时,生长素在植物体内的运输也是极性的。图19.11测定生长素极性运输的标准方法。运输的极性与重力相关的方位有关。植物生长调节剂讲座农业植保化控在茎中:上端下端在根中:根基根尖(中柱中)根尖根基(皮层中)IAA图19.13生长素极性运输的化学渗透模型。这里所示的是一组生长素转运细胞中的一个细胞植物生长调节剂讲座农业植保化控即使将竹子切段倒置,根也会从其形态学基部长出来,在基部形成根的

    9、原因是茎中生长素的极性运输与重力无关。植物生长调节剂讲座农业植保化控(二二)生长素的代谢生长素的代谢生长素生物合成的前体物质:色氨酸(tryptophan)。色氨酸转变为生长素时,其侧链要经过转氨、脱羧、氧化等反应,如图7-5所示。生长素的形成与锌有关,锌是色氨酸合成酶的组分。合成部位:植物的茎端分生组织、禾本科植物的芽鞘尖端、胚(是果实生长所需IAA的主要来源处)和正在扩展的叶等是IAA的主要合成部位。图图 7-5 7-5 由色氨酸生物合成吲哚乙酸的途径由色氨酸生物合成吲哚乙酸的途径1.1.生长素的生物合成生长素的生物合成 植物生长调节剂讲座农业植保化控 2.2.生长素的结合与降解生长素的结

    10、合与降解 植物体内具活性的生长素浓度一般都保持在最适范围内,对于多余的生长素(IAA),植物一般是通过结合(钝化)和降解进行自动调控的。(1)(1)束缚型和游离型生长素束缚型和游离型生长素 +糖、aa 游离型IAA 束缚型IAA 有活性 无活性(运输也无极性)束缚型IAA作用:贮藏形式;运输形式;解毒;防止氧化;调节游离IAA含量。(2)(2)生长素的降解生长素的降解 酶氧化降解(IAA氧化酶)IAA 光氧化降解(蓝光作用最强)植物生长调节剂讲座农业植保化控三、生长素的生理效应 (一一)促进生长促进生长 生长素最明显的效应就是在外用时可促进茎切段和胚芽鞘切段的伸长生长,其原因主要是促进了细胞的

    11、伸长。作用有三个特点:1.低浓度下促进生长,高浓度下抑制生长。2.不同器官对IAA敏感性:根芽茎 3.离体器官效应明显,对整株效果不明显。植物生长调节剂讲座农业植保化控0 10-11 10-9 10-7 10-5 10-3 10-1根根芽芽茎茎生长素浓度(生长素浓度(mol/L)不同器官对生长素的敏感性不同器官对生长素的敏感性植物生长调节剂讲座农业植保化控 (二二)促进插条不定根的形成促进插条不定根的形成 生长素可以有效促进插条不定根的形成,这主要是剌激了插条基部切口处细胞的分裂与分化,诱导了根原基的形成。对照对照IAAIAA植物生长调节剂讲座农业植保化控 (三)对养分的调运作用(三)对养分的

    12、调运作用生长素具有很强的吸引与调运养分的效应。利用这一特性,用IAA处理,可促使子房及其周围组织膨大而获得无籽果实。图19.39(A)草莓“果实”实际是一个膨胀的花柱,其生长是内“种子”生成的生长素调节的,这些“种子”其实是瘦果-真正的果实。(B)当将瘦果去除时,花柱就不能正常发育(C)用IAA喷放没有瘦果的花柱恢复了其正常的生长发育。植物生长调节剂讲座农业植保化控 (四四)生长素的其它效应生长素的其它效应 如促进菠萝开花、引起顶端优势(即顶芽对侧芽生长的抑制)、诱导雌花分化(但效果不如乙烯)、促进形成层细胞向木质部细胞分化、促进光合产物的运输、叶片的扩大和气孔的开放等。生长素还可抑制花朵脱落

    13、、叶片老化和块根形成等。图图19.3619.36生长素抑制了生长素抑制了菜豆植株中腋芽的生长。菜豆植株中腋芽的生长。(A)完整植株中的腋芽由于顶端优势的影响而被抑制(B)去除顶芽使得腋芽免疫顶端优势的影响(箭头)(C)对切面用含IAA的羊毛脂凝胶处理(包含在明胶胶囊中)从而抑制了腋芽的生长。植物生长调节剂讲座农业植保化控图图19.4019.40黄瓜茎组织中黄瓜茎组织中IAAIAA诱导的伤口周围木质部的再生作用诱导的伤口周围木质部的再生作用(A)进行伤口再生实验的方法。(B)荧光显微照片显示了伤口周围再生的维管组织。植物生长调节剂讲座农业植保化控四、生长素的作用机理(一)酸生长理论(一)酸生长理

    14、论雷(P.M.Ray)将燕麦胚芽鞘切段放入一定浓度生长素的溶液中,发现1015min后切段开始迅速伸长,同时介质的pH下降,细胞壁的可塑性增加。将胚芽鞘切段放入不含IAA的pH3.23.5的缓冲溶液中,则1min后可检测出切段的伸长,且细胞壁的可塑性也增加;如将切段转入pH7的缓冲溶液中,则切段的伸长停止;若再转入pH3.23.5的缓冲溶液中,则切段重新表现出伸长(表7-1)。植物生长调节剂讲座农业植保化控 基于上述结果,雷利和克莱兰(Rayle and Cleland)于1970年提出了生长素作用机理的酸生长理论酸生长理论(acid growth theory)。其要点:1.1.原生质膜上存

    15、在着非活化的质子泵原生质膜上存在着非活化的质子泵(H(H+-ATP-ATP酶酶),生长素,生长素作为泵的变构效应剂,与泵蛋白结合后使其活化。作为泵的变构效应剂,与泵蛋白结合后使其活化。2.2.活化了的质子泵消耗能量活化了的质子泵消耗能量(ATP)(ATP)将细胞内的将细胞内的H H+泵到细胞泵到细胞壁中,导致细胞壁基质溶液的壁中,导致细胞壁基质溶液的pHpH下降。下降。3.3.在酸性条件下,在酸性条件下,H H+一方面使细胞壁中对酸不稳定的键一方面使细胞壁中对酸不稳定的键(如氢键如氢键)断裂,另一方面断裂,另一方面(也是主要的方面也是主要的方面)使细胞壁中的使细胞壁中的某些多糖水解酶某些多糖水

    16、解酶(如纤维素酶如纤维素酶)活化或增加,从而使连接木活化或增加,从而使连接木葡聚糖与纤维素微纤丝之间的键断裂,细胞壁松驰。葡聚糖与纤维素微纤丝之间的键断裂,细胞壁松驰。4.4.细胞壁松驰后,细胞的压力势下降,导致细胞的水势下细胞壁松驰后,细胞的压力势下降,导致细胞的水势下降,细胞吸水,体积增大而发生不可逆增长。降,细胞吸水,体积增大而发生不可逆增长。由于生长素与H+-ATP酶的结合和随之带来的H+的主动分泌都需要一定的时间,所以生长素所引起伸长的滞后期(1015min)比酸所引起伸长的滞后期(1min)长。植物生长调节剂讲座农业植保化控Rayle&Cleland(1970)纤维素微纤丝纤维素微

    17、纤丝木葡聚糖木葡聚糖氢键氢键其它细胞壁多糖其它细胞壁多糖共价键共价键钝化钝化活化活化H+IAAATPADP细胞质细胞质细胞细胞膜膜细胞壁细胞壁质子泵质子泵植物生长调节剂讲座农业植保化控(二)基因活化学说(二)基因活化学说 生长素作用机理的“酸生长理论”虽能很好地解释生长素所引起的快速反应,但许多研究结果表明,在生长素所诱导的细胞生长过程中不断有新的原生质成分和细胞壁物质合成,且这种过程能持续几个小时,而完全由H+诱导的生长只能进行很短时间。生长素的长期效应是在转录和翻译水平上促进核酸和蛋白质的合成而影响生长的。由此提出了生长素作用机理的基因活化学说。该学说对生长素所诱导生长的长期效应解释如下:

    18、植物细胞具有全能性,但在一般情况下,绝大部分基因是处于抑制状态的,生长素的作用就是解除这种抑制,使某些处于“休眠”状态的基因活化,从而转录并翻译出新的蛋白质。当IAA与质膜上的激素受体蛋白(可能就是质膜上的质子泵)结合后,激活细胞内的第二信使,并将信息转导至细胞核内,使处于抑制状态的基因解阻遏,基因开始转录和翻译,合成新的mRNA和蛋白质,为细胞质和细胞壁的合成提供原料,并由此产生一系列的生理生化反应。植物生长调节剂讲座农业植保化控由于生长素所诱导的生长既有快速反应,又有长期效应,因此提出了生长素促进植物生长的作用方式设想(图7-8)。植物生长调节剂讲座农业植保化控(三)生长素受体(三)生长素

    19、受体(hormone receptor),是指能与激素特异结合的、并能引发特殊生理生化反应的蛋白质。然而,能与激素结合的蛋白质却并非都是激素受体,只可称其为某激素的结合蛋白(binding protein)。激素受体的一个重要特性是激素分子和受体结合后能激活一系列的胞内信号转导,从而使细胞作出反应。生长素受体在细胞中的存在位置有多种说法,但主要有两种:一种存在于一种存在于质膜质膜上上 它能促进细胞壁松驰,是酸生长它能促进细胞壁松驰,是酸生长理论的基础理论的基础另一种存在于另一种存在于细胞质细胞质(或细胞核或细胞核)中中 它能促进核酸和它能促进核酸和蛋白质的合成,是基因活化学说的基础。蛋白质的合

    20、成,是基因活化学说的基础。植物生长调节剂讲座农业植保化控第二节第二节 赤霉素类(赤霉素类(GAGA)一、赤霉素的发现及其种类 (一一)赤霉素的发现赤霉素的发现 赤霉素赤霉素(gibberellin,GA)是在研究水稻恶苗病时发现的,它是指具有赤霉烷骨架,能剌激细胞分裂和伸长的一类化合物的总称。19351935年日本科学家薮田从诱发恶苗病的赤霉菌中分离得年日本科学家薮田从诱发恶苗病的赤霉菌中分离得到了能促进生长的非结晶固体,并称之为赤霉素。到了能促进生长的非结晶固体,并称之为赤霉素。19381938年薮田和住木又从赤霉菌培养基的过滤液中分离出年薮田和住木又从赤霉菌培养基的过滤液中分离出了两种具有

    21、生物活性的结晶,命名为了两种具有生物活性的结晶,命名为“赤霉素赤霉素A”A”和和“赤霉素赤霉素B”B”。但由于。但由于19391939年第二次世界大战的爆发,年第二次世界大战的爆发,该项研究被迫停顿。该项研究被迫停顿。植物生长调节剂讲座农业植保化控 直到20世纪50年代初,英、美科学家从真菌培养液中首次获得了这种物质的化学纯产品,英国科学家称之为赤霉酸(1954),美国科学家称之为赤霉素X(1955)。后来证明赤霉酸和赤霉素X为同一物质,都是GA3。1955年日本东京大学的科学家对他们的赤霉素A进行了进一步的纯化,从中分离出了三种赤霉素,即赤霉素A1、赤霉素A2和赤霉素A3。通过比较发现赤霉素

    22、A3与赤霉酸和赤霉素X是同一物质。1957年东京大学的科学家又分离出了一种新的赤霉素A,叫赤霉素A4。此后,对赤霉素A系列(赤霉素An)就用缩写符号GAn表示。后来,很快又发现了几种新的GA,并在未受赤霉菌感染的高等植物中也发现了许多与GA有同样生理功能的物质。1959年克罗斯(B.E.Cross)等测出了GA3、GA1和GA5的化学结构。植物生长调节剂讲座农业植保化控(二)赤霉素的种类和化学结构(二)赤霉素的种类和化学结构赤霉素的种类很多,它们广泛分布于植物界,从被子植物、裸子植物、蕨类植物、褐藻、绿藻、真菌和细菌中都发现有赤霉素的存在。到1998年为止,已发现121种赤霉素,可以说,赤霉素

    23、是植物激素中种类最多的一种激素。植物生长调节剂讲座农业植保化控 赤霉素的种类虽然很多,但都是以赤霉烷(gibberellane)为骨架的衍生物。赤霉素是一种双萜,由四个异戊二烯单位组成,有四个环,其碳原子的编号如下图所示。A、B、C、D四个环对赤霉素的活性都是必要的,环上各基团的种种变化就形成了各种不同的赤霉素,但所有有活性的赤霉素的第七位碳均为羧基。根据赤霉素分子中碳原子的不同,可分为20-C赤霉素和19-C赤霉素。前者含有赤霉烷中所有的20个碳原子(如GA15、GA24、GA19、GA25、GA17等),而后者只含有19个碳原子,第20位的碳原子已丢失(如GA1、GA3、GA4、GA9、G

    24、A20等)。19-C赤霉素在数量上多于20-C赤霉素,且活性也高。商品GA主要是通过大规模培养遗传上不同的赤霉菌的无性世代而获得的,其产品有赤霉酸(GA3)及GA4和GA7的混合物。植物生长调节剂讲座农业植保化控二、赤霉素的生物合成与运输 (一一)生 物生 物合成合成 种子植物中赤霉素的生物合成途径,根据参与酶的种类和在细胞中的合成部位,大体分为三个阶段(图7-10)。图图 7-10 7-10 种子植物赤霉素生物合成的基本途径种子植物赤霉素生物合成的基本途径(1)、(2)、(3)阶段分别在质体、内质网和细胞质中进行。图中记号:王古王巴基焦磷酸合成酶(CPS);贝壳杉烯合成酶(KS);7-氧化酶

    25、;20-氧化酶;.3-羟化酶植物生长调节剂讲座农业植保化控生物合成前体:甲羟戊酸(甲瓦龙酸)植物体内合成部位:顶端幼嫩部分,如根尖和茎尖,生长中的种子和果实,其中正在发育的种子是GA的丰富来源。赤霉素生物合成的3个阶段植物生长调节剂讲座农业植保化控(二)运输(二)运输GA在植物体内的运输没有极性,可以双向运输。转化:游离型GA 束缚型GA(GA-葡萄糖酯和GA-葡萄糖苷)贮藏和运输形式木质部韧皮部植物生长调节剂讲座农业植保化控三、赤霉素的生理效应GA促进生长具有以下特点:1 1、促进整株植物生长、促进整株植物生长 用GA处理,能显著促进植株茎的伸长生长,尤其是对矮生突变品种的效果特别明显。但G

    26、A对离体茎切段的伸长没有明显的促进作用,而IAA对整株植物的生长影响较小,却对离体茎切段的伸长有明显的促进作用。(一)促进茎的伸长生长(一)促进茎的伸长生长GAs对NO.9矮生豌豆苗茎干伸长进程的影响植物生长调节剂讲座农业植保化控17.7 GA3处理后三天Tanginbozu矮生稻叶鞘伸长的提高:(左)对照;(中)每株苗施100pgGA3;(右)每株苗施1ngGA3。植物生长调节剂讲座农业植保化控2.2.促进节间的伸长促进节间的伸长 GA主要作用于已有节间伸长,而不是促进节数的增加。3.3.不存在超最适浓不存在超最适浓度的抑制作用度的抑制作用 即使GA浓度很高,仍可表现出最大的促进效应,这与生

    27、长素促进植物生长具有最适浓度的情况显著不同。外源GA1对正常的和矮生(dl)玉米的作用。赤霉素促进了矮生突变体茎干的明显伸长,但是对野生型的植株却没有或仅有很小的效果植物生长调节剂讲座农业植保化控(二)诱导开花(代(二)诱导开花(代替低温、长日照)替低温、长日照)某些高等植物花芽的分化是受日照长度(即光周期)和温度影响的。例如,对于二年生植物,需要一定日数的低温处理(即春化)才能开花,否则表现出莲座状生长而不能抽薹开花。若对这些未经春化的植物施用GA,则不经低温过程也能诱导开花,且效果很明显。此外,也能代替长日照诱导某些长日植物开花,但GA对短日植物的花芽分化无促进作用 甘蓝,在短光照下保持丛

    28、生状,但施用赤霉素处理可以诱导其伸长和开花植物生长调节剂讲座农业植保化控需寒胡萝卜品需寒胡萝卜品种开花时间种开花时间GAGA处处理后的效果。理后的效果。(左)对照:不施GA,不冷处理;(中)不进行冷处理,但每天施10gGA3为期一周;(右)六周冷处理。植物生长调节剂讲座农业植保化控(三)打破休眠,促进萌发(三)打破休眠,促进萌发用23gg-1的GA处理休眠状态的马铃薯能使其很快发芽,从而可满足一年多次种植马铃薯的需要。对于需光和需低温才能萌发的种子,如莴苣、烟草、紫苏、李和苹果等的种子,GA可代替光照和低温打破休眠,这是因为GA可诱导-淀粉酶、蛋白酶和其它水解酶的合成,催化种子内贮藏物质的降解

    29、,以供胚的生长发育所需。在啤酒制造业中,用GA处理萌动而未发芽的大麦种子,可诱导-淀粉酶的产生,加速酿造时的糖化过程,并降低萌芽的呼吸消耗,从而降低成本。植物生长调节剂讲座农业植保化控图20.33 萌芽过程中大麦籽粒的结构与 各 种 的 功 能(A)。大麦未萌芽糊粉层的显微照片(B)淀粉酶产生的早期阶段(C)与晚期阶段(D)大麦糊粉层前质体的显微照片。蛋白质存储泡囊(psv)在每个细胞中可见。植物生长调节剂讲座农业植保化控(四)促进雄花分化(四)促进雄花分化 对于雌雄异花同株的植物,用GA处理后,雄花的比例增加;对于雌雄异株植物的雌株,如用GA处理,也会开出雄花。GA在这方面的效应与生长素和乙

    30、烯相反。(五)其它生理效应(五)其它生理效应 GA还可加强IAA对养分的动员效应,促进某些植物坐果和单性结实、延缓叶片衰老等。此外,GA也可促进细胞的分裂和分化,GA促进细胞分裂是由于缩短了G1期和S期。但GA对不定根的形成却起抑制作用,这与生长素又有所不同。图20.4赤霉素诱导的Thompson无籽葡萄的生长。左边的一串是未处理的。而右边的一串则是在果实发育期间用赤霉素喷施过的植物生长调节剂讲座农业植保化控四、赤霉素的作用机理(一)(一)GAGA与酶的合成与酶的合成 关于GA与酶合成的研究主要集中在GA如何诱导禾谷类种子-淀粉酶的形成上。大麦种子内的贮藏物质主要是淀粉,发芽时淀粉-淀粉酶的作

    31、用下水解为糖以供胚生长的需要。去胚种子+糊粉层 不能产生-淀粉酶 去胚种子+GA+糊粉层 能产生-淀粉酶 去胚种子+GA 不能产生-淀粉酶这证明糊粉层细胞是GA作用的靶细胞。植物生长调节剂讲座农业植保化控 GA促进无胚大麦种子合成-淀粉酶具有高度的专一性和灵敏性,现已用来作为GA的生物鉴定法,在一定浓度范围内,-淀粉酶的产生与外源GA的浓度成正比。大麦籽粒在萌发时,贮藏在胚中的束缚型GA水解释放出游离的GA,通过胚乳扩散到糊粉层,并诱导糊粉层细胞合成-淀粉酶,酶扩散到胚乳中催化淀粉水解(图7-13),水解产物供胚生长需要。图图7-137-13大麦籽粒纵剖面示意图及水解酶大麦籽粒纵剖面示意图及水

    32、解酶的合成与的合成与GAGA的关系的关系植物生长调节剂讲座农业植保化控图图20.38 20.38 大麦湖粉大麦湖粉层中由赤霉素诱导层中由赤霉素诱导的合成的结构模型。的合成的结构模型。一个诱导一个诱导22淀粉酶淀粉酶基因转录的无基因转录的无Ca2+Ca2+的途径;包含的途径;包含22淀淀粉酶分泌作用的包粉酶分泌作用的包含含Ca2+Ca2+的途径。的途径。植物生长调节剂讲座农业植保化控(二)(二)GAGA调节调节IAAIAA水平水平 GA可使内源IAA的水平增高。(1)GA降低了IAA氧化酶的活性,(2)GA促进蛋白酶的活性,使蛋白质水解,IAA的合成前体(色氨酸)增多。(3)GA还促进束缚型IA

    33、A释放出游离型IAA。图图7-14 GA7-14 GA与与IAAIAA形成的关系形成的关系 双线箭头表示生物合成;虚线箭头表示调节部位。表示促进;表示抑制。植物生长调节剂讲座农业植保化控(二)(二)赤霉素结合蛋白赤霉素结合蛋白胡利(Hooley)等(1993)首次报道了野燕麦糊粉层中有一种分子量为60 000的GA特异结合蛋白(gibberellin binding protein,GBP)。小麦糊粉层的GBP在与GA1结合时需Ca2+参与,这是因为GA1促进-淀粉酶合成也需要Ca2+的缘故。GA+GBP GA-GBP 基因表达植物生长调节剂讲座农业植保化控第三节细胞分裂素类(第三节细胞分裂素

    34、类(CTKCTK)生长素和赤霉素的主要作用都是促进细胞的伸长,虽然它们也能促进细胞分裂,但是次要的,而细胞分裂素类则是以促进细胞分裂为主的一类植物激素。一、细胞分裂素的发现和种类一、细胞分裂素的发现和种类 当感染冠瘿菌时西红柿茎干上形成的瘤。在拍摄此照片的两个月前,对这个茎干进行创伤处理并用冠瘿菌的病毒进行接种。植物生长调节剂讲座农业植保化控(一一)细胞分裂素的发现细胞分裂素的发现 斯库格(F.Skoog)和崔(1948)等在寻找促进组织培养中细胞分裂的物质时,发现生长素存在时腺嘌呤具有促进细胞分裂的活性。1954年,雅布隆斯基(J.R.Jablonski)和斯库格发现烟草髓组织在只含有生长素

    35、的培养基中细胞不分裂而只长大,如将髓组织与维管束接触,则细胞分裂。1955年米勒(C.O.Miller)和斯库格等偶然将存放了4年的鲱鱼精细胞DNA加入到烟草髓组织的培养基中,发现也能诱导细胞的分裂,且其效果优于腺嘌呤,但用新提取的DNA却无促进细胞分裂的活性,如将其在pH4的条件下进行高压灭菌处理,则又可表现出促进细胞分裂的活性。他们分离出了这种活性物质,并命名为激动素(kinetin,KT)。1956年,米勒等从高压灭菌处理的鲱鱼精细胞DNA分解产物中纯化出了激动素结晶,并鉴定出其化学结构(图7-15)为6-呋喃氨基嘌呤(N6-furfurylaminopurine),分子式为C10H9N

    36、5O,分子量为215.2,接着又人工合成了这种物质。植物生长调节剂讲座农业植保化控 1963年,莱撒姆(D.S.Letham)从未成熟的玉米籽粒中分离出了一种类似于激动素的细胞分裂促进物质,命名为玉米素(zeatin,Z,ZT),1964年确定其化学结构为6-(4-羟基-3-甲基-反式-2-丁烯基氨基)嘌呤,分子式为C10H13N5O,分子量为129.7(图7-15)。1965年斯库格等提议将来源于植物的、其生理活性类似于激动素的化合物统称为细胞分裂素(cytokinin,CTK,CK)目前在高等植物中已至少鉴定出了30多种细胞分裂素。图图 7-15 7-15 常见的天然细胞分裂素和常见的天然

    37、细胞分裂素和人工合成的细胞分裂素的结构式人工合成的细胞分裂素的结构式植物生长调节剂讲座农业植保化控(二)细胞分裂素的种类和结构特点(二)细胞分裂素的种类和结构特点天然天然CTKCTK游离态CTK:玉米素、玉米素核苷、二氢玉米素、异戊烯基腺嘌呤(iP)等。异戊烯基腺苷(iPA)、甲硫基异戊烯基腺苷、甲硫基玉米素等结合态CTK:结合在tRNA上,构成tRNA的组成成分。CTK均为腺嘌呤的衍生物。植物生长调节剂讲座农业植保化控植物生长调节剂讲座农业植保化控二、细胞分裂素的运输与代谢(一)含量与运输(一)含量与运输分布:可进行细胞分裂的部位,如茎尖、根尖、未成熟的种子、萌发的种子和生长着的果实等。从高

    38、等植物中发现的细胞分裂素,大多数是玉米素或玉米素核苷。合成部位:根尖运输:经木质部向上运输。无极性。运输形式:玉米素、玉米素核苷植物生长调节剂讲座农业植保化控植物体内游离型细胞分裂素的来源:(1 1)tRNA的降解降解(二)细胞分裂素的代谢(二)细胞分裂素的代谢植物生长调节剂讲座农业植保化控(2)合成合成前体:异戊烯基焦磷(iPP)和AMP植物体内游离型细胞植物体内游离型细胞分裂素的来源:分裂素的来源:植物生长调节剂讲座农业植保化控CTK的钝化:通过糖基化、乙酰基化等方式转化为结合态形式。细胞分裂素的结合态形式较为稳定,适于贮藏或运输。植物生长调节剂讲座农业植保化控细胞分裂素氧化酶可能对细胞分

    39、裂素起钝化作用,防止细胞分裂素积累过多,产生毒害。在细胞分裂素氧化酶(cytokinin oxidase)的作用下,玉米素、玉米素核苷和异戊烯基腺嘌呤等可转变为腺嘌呤及其衍生物。分解:植物生长调节剂讲座农业植保化控三、细胞分裂素的生理效应(一)促进细胞分裂(一)促进细胞分裂细胞分裂素的主要生理功能就是促进细胞的分裂。生长素、赤霉素和细胞分裂素都有促进细胞分裂的效应,但它们各自所起的作用不同。生长素只促进核的分裂(因促进了DNA的合成),而与细胞质的分裂无关。而细胞分裂素主要是对细胞质的分裂起作用,所以,细胞分裂素促进细胞分裂的效应只有在生长素存在的前提下才能表现出来。而赤霉素促进细胞分裂主要是

    40、缩短了细胞周期中的G1期(DNA合成准备期)和S期(DNA合成期)的时间,从而加速了细胞的分裂。植物生长调节剂讲座农业植保化控图图21.4 21.4 冠瘿菌的瘤块诱导进程。冠瘿菌的瘤块诱导进程。植物生长调节剂讲座农业植保化控(二二)促进芽的分化促进芽的分化1957年斯库格和米勒在进行烟草的组织培养时发现,细胞分裂素(激动素)和生长素的相互作用控制着愈伤组织根、芽的形成。v当培养基中当培养基中CTKCTK/IAAIAA的比值高时,愈的比值高时,愈伤组织形成芽;伤组织形成芽;v当当CTKCTK/IAAIAA的比值低时,愈伤组织形的比值低时,愈伤组织形成根;成根;v如二者的浓度相等,则愈伤组织保持生

    41、长而如二者的浓度相等,则愈伤组织保持生长而不分化;所以,通过调整二者的比值,可诱不分化;所以,通过调整二者的比值,可诱导愈伤组织形成完整的植株。导愈伤组织形成完整的植株。植物生长调节剂讲座农业植保化控图图21.13 21.13 烟草在不同浓度生长素与激幼素的培养下器官的形成的调整与烟草在不同浓度生长素与激幼素的培养下器官的形成的调整与生长。在低生长素与高的激动素浓度(下左)下形成芽。在高生长素与生长。在低生长素与高的激动素浓度(下左)下形成芽。在高生长素与低的激动素浓度(上右)下形成根。在这两种激素的中间的或高浓度下低的激动素浓度(上右)下形成根。在这两种激素的中间的或高浓度下(中间与下右),

    42、形成未分化的胼胝质。(中间与下右),形成未分化的胼胝质。植物生长调节剂讲座农业植保化控将拟南芥组织置于含生长素IBA和细胞分裂素的环境中诱导愈伤组织的产生。当愈伤组织被放在只有生长素的环境中作次培养时,诱导根产生(左图);当被放在细胞分裂素与生长素之比比较高的环境中培养时,芽激增(右图)。植物生长调节剂讲座农业植保化控(三)促进细胞扩大(三)促进细胞扩大 细胞分裂素可促进一些双子叶植物如菜豆、萝卜的子叶或叶圆片扩大(图7-17),这种扩大主要是因为促进了细胞的横向增粗。由于生长素只促进细胞的纵向伸长,而赤霉素对子叶的扩大没有显著效应,所以CTK这种对子叶扩大的效应可作为CTK的一种生物测定方法

    43、。图图7-177-17细胞分裂素对萝卜叶膨大的作用细胞分裂素对萝卜叶膨大的作用右边的子叶用合成的细胞分裂素6-苄基氨基9-(四氢吡喃=2=基)嘌呤(100mgL-1)处理(叶面涂施),左边的是对照(转引自潘瑞炽,董愚得,植物生理学,1996)植物生长调节剂讲座农业植保化控图图21.21 21.21 生长素对萝卜子叶扩展的影响。这里本实验描述了光和细胞分生长素对萝卜子叶扩展的影响。这里本实验描述了光和细胞分裂素的作用是加性的。裂素的作用是加性的。ToTo表示了实验开始之前萌发的萝卜幼苗。离体的表示了实验开始之前萌发的萝卜幼苗。离体的子叶在暗中或光下有加或不加子叶在暗中或光下有加或不加2.5mM2

    44、.5mM玉米素的情况下培养三天(玉米素的情况下培养三天(T3T3)。)。在暗中或光照下,玉米素处理的子叶都比对照中的子叶扩展的大。在暗中或光照下,玉米素处理的子叶都比对照中的子叶扩展的大。植物生长调节剂讲座农业植保化控(四)促进侧芽发育,消除顶端优势(四)促进侧芽发育,消除顶端优势CTK能解除由生长素所引起的顶端优势,促进侧芽生长发育。转转iptipt基因的烟草基因的烟草香脂冷杉上的众生枝香脂冷杉上的众生枝植物生长调节剂讲座农业植保化控 A iptA ipt基因诱导四环素处理的叶腋长出侧芽基因诱导四环素处理的叶腋长出侧芽 B B 左:转左:转iptipt基因的芽嫁接到野生型的根上基因的芽嫁接到

    45、野生型的根上,右:野生型的右:野生型的芽嫁接到转基因烟草的根上芽嫁接到转基因烟草的根上植物生长调节剂讲座农业植保化控(五)延缓叶片衰老(五)延缓叶片衰老 如在离体叶片上局部涂以激动素则在叶片其余部位变黄衰老时,涂抹激动素的部位 仍 保 持 鲜 绿(图7-18A、B)。这不仅说明了激动素有延缓叶片衰老的作用,而且说明了激动素在一般组织中是不易移动的。图图 7-18 7-18 激动素的保绿作用及对物质运输的影激动素的保绿作用及对物质运输的影A.离体绿色叶片。圆圈部位为激动素处理区;B.几天后叶片衰老变黄,但激动素处理区仍保持绿色,黑点表示绿色;C.放射性氨基酸被移动到激动素处理的一半叶片,黑点表示

    46、有C14-氨基酸的部位植物生长调节剂讲座农业植保化控图图21.19 21.19 细胞分裂素对黄瓜幼苗中氨基酸运动的效应。一个不能被代细胞分裂素对黄瓜幼苗中氨基酸运动的效应。一个不能被代谢的经过放射性标记的氨基酸,如氨基异丁酸以离散点的形式施用谢的经过放射性标记的氨基酸,如氨基异丁酸以离散点的形式施用在这些幼苗各个植株的右侧子叶上。在这些幼苗各个植株的右侧子叶上。植物生长调节剂讲座农业植保化控细胞分裂素延缓衰老是由于细胞分裂素能够延缓叶绿素和蛋白质的降解速度,稳定多聚核糖体(蛋白质高速合成的场所),抑制DNA酶、RNA酶及蛋白酶的活性,保持膜的完整性等。此外,CTK还可调动多种养分向处理部位移动

    47、,因此有人认为CTK延缓衰老的另一原因是由于促进了物质的积累,现在有许多资料证明激动素有促进核酸和蛋白质合成的作用。由于CTK有保绿及延缓衰老等作用,故可用来处理水果和鲜花等以保鲜、保绿,防止落果。含有细胞分裂素生物合成基因ipt的转基因的烟草植株中,叶片的衰老延迟了。Ipt基因表达相对于诱导衰老的信号的反应。植物生长调节剂讲座农业植保化控17.36 在果实类2A11促进剂调节下蕃茄果实Agrobacterium tumefaciens ipt基因的突变。似非而是地,假若细胞分裂素能延缓果实衰老,蕃茄的红色区域含有六倍于绿色区域的细胞分裂素。植物生长调节剂讲座农业植保化控四、细胞分裂素的作用机

    48、理(一)细胞分裂素结合蛋白(一)细胞分裂素结合蛋白 关于细胞分裂素的结合位点有多种不同的报道。埃里奥和福克斯(Erion and Fox,1981)以小麦胚的核糖体为材料,发现其中含有一种高度专一性和高亲和力的细胞分裂素结合蛋白,分子量为183 000,含有四个不同的亚基。福克斯等(1992)进一步分析不同来源的小麦及不同禾谷作物胚芽的细胞分裂素结合蛋白,证实其亚基数不同,这也说明细胞分裂素结合蛋白的多样性。细胞分裂素结合蛋白存在于核糖体上,提示其可能与RNA翻译作用有关。有报道认为绿豆线粒体有与细胞分裂素高亲和力的结合蛋白。黄海等(1987)发现小麦叶片叶绿体中也存在细胞分裂素受体,也有认为

    49、细胞分裂素结合蛋白可能参与叶绿体能量转换的调节。植物生长调节剂讲座农业植保化控(二)细胞分裂素对转录和翻译的控制(二)细胞分裂素对转录和翻译的控制 激动素能与豌豆芽染色质结合,调节基因活性,促进RNA合成。6-BA加入到大麦叶染色体的转录系统中,增加了RNA聚合酶的活性。在蚕豆细胞中,6-BA或受体蛋白单独存在时,都不能促进RNA合成,只有两者同时存在下,3H-UTP掺入核酸中的量才显著增多。这表明细胞分裂素有促进转录的作用。多种细胞分裂素是植物tRNA的组成成分,占tRNA结构中约30个稀有碱基的小部分。然而现已从菜豆(Phasolus vulgaris)种子中分离出玉米素顺反异构酶(zea

    50、tin cis-trans-isomerase),暗示了细胞分裂素和tRNA之间确实存在某种关系。细胞分裂素可以促进蛋白质的生物合成。因为细胞分裂素存在于核糖体上,促进核糖体与mRNA结合,形成多核糖体,加快翻译速度,形成新的蛋白质。植物生长调节剂讲座农业植保化控(三)细胞分裂素与钙信使的关系(三)细胞分裂素与钙信使的关系细胞分裂素的作用可能与钙密切相关。在多种依赖细胞分裂素的植物生理试验中,钙与细胞分裂素表现相似的或相互增强的效果,如延缓玉米叶片老化,扩大苍耳子叶面积等钙可能是细胞分裂素信息传递系统的一部分。钙往往通过钙钙调素复合体而作为第二信使。一些研究表明,细胞分裂素作用还与钙调素活性有

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:植物生长调节剂讲座农业植保化控课件.ppt
    链接地址:https://www.163wenku.com/p-4503360.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库