书签 分享 收藏 举报 版权申诉 / 35
上传文档赚钱

类型机械原理第3章平面机构的运动分析课件.ppt

  • 上传人(卖家):晟晟文业
  • 文档编号:4502287
  • 上传时间:2022-12-15
  • 格式:PPT
  • 页数:35
  • 大小:984KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《机械原理第3章平面机构的运动分析课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    机械 原理 平面 机构 运动 分析 课件
    资源描述:

    1、第三章第三章 平面机构的运动分析平面机构的运动分析31机构运动分析的目的与方法机构运动分析的目的与方法32速度瞬心及其在机构速度分析中的应用速度瞬心及其在机构速度分析中的应用33用矢量方程图解法作机构速度和加速度用矢量方程图解法作机构速度和加速度 分析分析34综合运用瞬心法和矢量方程图解法对复综合运用瞬心法和矢量方程图解法对复 杂机构进行速度分析杂机构进行速度分析35用解析法作机构的运动分析用解析法作机构的运动分析作者:潘存云教授ACBED31 机构运动分析的目的与方法机构运动分析的目的与方法设计任何新的机械,都必须进行运动分析工作。以确定机械是否满足工作要求。1.位置分析位置分析研究内容:位

    2、置分析、速度分析研究内容:位置分析、速度分析和加速度分析。和加速度分析。确定机构的位置(位形),绘制机构位置图。确定机构的位置(位形),绘制机构位置图。确定构件的运动空间,判断是否发生干涉。确定构件的运动空间,判断是否发生干涉。确定构件确定构件(活塞活塞)行程,行程,找出上下极限位置。找出上下极限位置。从动构件从动构件点的轨迹点的轨迹构件位置构件位置速度速度加速度加速度原动件的原动件的运动规律运动规律内涵:内涵:确定点的轨迹(连杆曲线),如确定点的轨迹(连杆曲线),如鹤式吊鹤式吊。HEHD2.2.速度分析速度分析 通过分析,了解从动件的速度变化规律是否满足通过分析,了解从动件的速度变化规律是否

    3、满足 工作要求。如工作要求。如牛头刨牛头刨为加速度分析作准备。为加速度分析作准备。3.加速度分析加速度分析的目的是为确定惯性力作准备。的目的是为确定惯性力作准备。方法:方法:图解法图解法简单、直观、精度低、求系列位置时繁琐。简单、直观、精度低、求系列位置时繁琐。解析法解析法正好与以上相反。正好与以上相反。实验法实验法试凑法,配合连杆曲线图册,用于解决试凑法,配合连杆曲线图册,用于解决 实现预定轨迹问题。实现预定轨迹问题。作者:潘存云教授12A2(A1)B2(B1)32 速度瞬心及其在机构速度分析中的应用速度瞬心及其在机构速度分析中的应用 机构速度分析的图解法有:速度机构速度分析的图解法有:速度

    4、瞬心法、相对运动法、线图法。瞬心法、相对运动法、线图法。瞬心法瞬心法:适合于简单机构的运动分析。适合于简单机构的运动分析。1.1.速度瞬心及其位置的确定速度瞬心及其位置的确定绝对瞬心绝对瞬心重合点绝对速度为零。重合点绝对速度为零。P21相对瞬心相对瞬心重合点绝对速度不为零。重合点绝对速度不为零。VA2A1VB2B1Vp2=Vp10 Vp2=Vp1=0 两个作平面运动构件上两个作平面运动构件上速度相速度相同同的一对的一对重合点重合点,在某一,在某一瞬时瞬时两构两构件相对于该点作件相对于该点作相对转动相对转动,该点称该点称瞬时速度中心。瞬时速度中心。求法?1)1)速度瞬心的定义速度瞬心的定义速度瞬

    5、心特点:速度瞬心特点:该点涉及两个构件。该点涉及两个构件。2)瞬心数目)瞬心数目 每两个构件就有一个瞬心每两个构件就有一个瞬心 根据排列组合有根据排列组合有P12P23P13构件数构件数 4 5 6 8瞬心数瞬心数 6 10 15 281 2 3若机构中有若机构中有N个构件,则个构件,则K KN N(N N-1)/2-1)/2 绝对速度相同,相对速度为零。绝对速度相同,相对速度为零。相对回转中心。相对回转中心。121212tt123)机构瞬心位置的确定)机构瞬心位置的确定1.直接观察法直接观察法 适用于求通过运动副直接相联的两构件瞬心位置。适用于求通过运动副直接相联的两构件瞬心位置。nnP12

    6、P12P122.三心定律(定理)三心定律(定理)V12定义:定义:三个彼此作平面运动的构件共有三个彼此作平面运动的构件共有三个瞬三个瞬心心,且它们,且它们位于同一条直线上位于同一条直线上。v注意注意:此法特别适用于两构件不通过运动副:此法特别适用于两构件不通过运动副直接相联的场合。直接相联的场合。3214举例:求曲柄滑块机构的速度瞬心。举例:求曲柄滑块机构的速度瞬心。P14P12P34P13P24P23解:瞬心数为:解:瞬心数为:瞬心位置:瞬心位置:1.直接观察求瞬心直接观察求瞬心2.三心定律求瞬心三心定律求瞬心K KN N(N N-1)/2-1)/2 6 6 N N=4=41 11232.速

    7、度瞬心在机构速度分析中的应用速度瞬心在机构速度分析中的应用1)求线速度求线速度已知凸轮转速已知凸轮转速1 1,求推杆的速度。,求推杆的速度。P23解:解:直接观察求瞬心直接观察求瞬心P13、P23。V2求瞬心求瞬心P12的速度的速度。P13 根据三心定律和公法线根据三心定律和公法线 nn求瞬心的位置求瞬心的位置P12。nnP12 V2V P12lP13P121 1长度长度P13P12直接从图上量取。直接从图上量取。P24P13作者:潘存云教授2 22)求角速度求角速度解:解:瞬心数为瞬心数为 6个个直接观察能求出直接观察能求出 4个个余下的余下的2个用三心定律求出。个用三心定律求出。求瞬心求瞬

    8、心P24的速度的速度。a)铰链机构铰链机构已知构件已知构件2的转速的转速2 2,求构件,求构件4的角速度的角速度4 4。方向方向:与与2 2相同。相同。相对瞬心位于两绝对瞬心的同一侧,两构件转向相同VP2423414 4P12P23P34P14 VP24lP24P122VP24lP24P144 4 2 P24P12/P24P14 312b)高副机构高副机构已知构件已知构件2的转速的转速2 2,求构件,求构件3的角速度的角速度3 3。2 2解解:用三心定律求出用三心定律求出P P2323。求瞬心求瞬心P P2323的速度的速度:P P1212P P1313方向方向:与与2 2相反。相反。VP23

    9、相对瞬心位于两绝对瞬心之间,两构件转向相反。n nn nP P23233 3VP23lP23P122 2VP23lP23P133 3 3 32 2P13P23/P12P23312P P2323P P1313P P12123)求传动比求传动比定义:两构件角速度之比传动比。定义:两构件角速度之比传动比。结论结论:两构件的角速度之比等于绝对瞬心至相对两构件的角速度之比等于绝对瞬心至相对瞬心的距离之反比瞬心的距离之反比。角速度的方向为:角速度的方向为:相对瞬心位于两绝对瞬心的相对瞬心位于两绝对瞬心的同一侧同一侧时,两构件时,两构件转向相同转向相同。相对瞬心位于两绝对瞬心相对瞬心位于两绝对瞬心之间之间时

    10、,两构件时,两构件转向相反。转向相反。2 23 33 3/2 2 P12P23/P13P234)4)用瞬心法解题步骤用瞬心法解题步骤绘制机构运动简图;绘制机构运动简图;求瞬心的位置;求瞬心的位置;求出相对瞬心的速度求出相对瞬心的速度;瞬心法的优缺点:瞬心法的优缺点:适合于求简单机构的速度,机构复杂时因适合于求简单机构的速度,机构复杂时因 瞬心数急剧增加而求解过程复杂。瞬心数急剧增加而求解过程复杂。有时瞬心点落在纸面外。有时瞬心点落在纸面外。仅适于仅适于求速度求速度V V,使应用有一定局限性。使应用有一定局限性。求构件绝对速度求构件绝对速度V V或角速度或角速度。33 用矢量方程图解法作机构速度

    11、和加速度分析用矢量方程图解法作机构速度和加速度分析1.基本原理和作法基本原理和作法注意:注意:1)一个矢量具有大小和方向两个参数;)一个矢量具有大小和方向两个参数;2)一个矢量方程可以求解两个未知参数。)一个矢量方程可以求解两个未知参数。设有矢量方程:设有矢量方程:D A+B+CDABC D A+B+C 大小:?大小:?方向:?方向:?v矢量方程图解法的理论依据:矢量方程图解法的理论依据:运动合成原理(运动合成原理(理论力学理论力学)C点运动=随B点平动+绕B点转动CBBCvvvCBBCaaaABC11234DnntnCCBBCBCBaaaaaaB2点运动=B3点牵连运动+B2与B3的相对运动

    12、4A1B2C33232BBBBvvvrBBkBBBB323232aaaa2332 32 3nntrkBBBB BB Baaaaa(1)同一构件上两点速度和加速度之间的关系)同一构件上两点速度和加速度之间的关系 1)速度之间的关系速度之间的关系选速度比例尺选速度比例尺v(m/s/mm)在任意点在任意点p作图使作图使VAvpa,ab同理有:同理有:VCVA+VCA 大小:大小:?方向:方向:?CA?CA相对速度为:相对速度为:VBAvabVBVA+VBA按图解法得:按图解法得:VBvpb,不可解!不可解!p大小:大小:方向:方向:BABA?方向:方向:p b方向:方向:a b BACvBabpc同

    13、理有:同理有:VCVB+VCB大小:大小:?方向:方向:?CB?CBVCVA+VCA VB+VCB不可解!不可解!联立方程有:联立方程有:作图得:作图得:VCv pcVCAv acVCBv bc方向:方向:p c方向:方向:a c 方向:方向:b c 大小:大小:?方向:方向:?CA CB?CA CBACB作者:潘存云教授ACBcabpVBA/L/LBABAvab/l AB 同理:同理:vca/l CA称称pabc为为速度多边形速度多边形p p为为极点。极点。得:得:ab/ABbc/BCca/CA abcabcABCABC 方向:顺时针方向:顺时针强调用相对速度求vcb/l CBcabp作者:

    14、潘存云教授作者:潘存云教授cabpACB速度多边形速度多边形的性质的性质:联接联接p点和任一点的向量代表该点和任一点的向量代表该 点在机构图中同名点的绝对速点在机构图中同名点的绝对速 度,指向为度,指向为p该点。该点。联接任意两点的向量代表该两点联接任意两点的向量代表该两点 在在机构图中同名点的相对速度,机构图中同名点的相对速度,指向与速度的下标相反。如指向与速度的下标相反。如bc代代 表表VCB而不是而不是VBC。常用相对速常用相对速 度来求构件的角速度度来求构件的角速度。abcabcABCABC,称,称abcabc为为ABCABC的速的速 度影象,两者相似且字母顺序一致。度影象,两者相似且

    15、字母顺序一致。ABCABC沿沿方向转过方向转过9090。称。称abcabc为为 ABCABC的速度影象。的速度影象。P极点极点p代表机构中所有速度为零的点的影象。代表机构中所有速度为零的点的影象。绝对瞬心D作者:潘存云教授cabp作者:潘存云教授ACB速度影像的用途:速度影像的用途:已知某构件上两点的速度可求得其上任意点的速度已知某构件上两点的速度可求得其上任意点的速度。例如,求例如,求BCBC中间点中间点E E的速度的速度V VE E时,时,bcbc上中间点上中间点e e为为E E点的影点的影象,联接象,联接pepe就是就是V VE EEe思考题:思考题:连架杆连架杆AD的速度影像在何处的速

    16、度影像在何处?Db作者:潘存云教授BAC2)加速度关系加速度关系求得:求得:aBapb选加速度比例尺选加速度比例尺a(m/s2/mm)在任意点在任意点p作图使作图使aAapab”设已知角速度设已知角速度,A点加速度和点加速度和aB的方向的方向A B两点间加速度之间的关系有:两点间加速度之间的关系有:aBaA+anBA+atBAatBAab”b方向方向:b”baBAab a方向方向:a bb 大小:大小:方向:方向:?BABA?BABA2 2lABaAaBap作者:潘存云教授aCaA+anCA+atCA aB+anCB+atCB 又:又:aC aB+anCB+atCB不可解!不可解!联立方程:联

    17、立方程:同理:同理:aCaA+anCA+atCA 不可解!不可解!作图求解得作图求解得:atCAac”c atCBacc”方向:方向:c”c 方向:方向:c”c 方向:方向:p c?BAC大小:大小:?方向:方向:?2 2lCACACA?CACA大小:大小:?方向:方向:?2 2lCBCBCB?CBCBbb”apc”c”caCapc作者:潘存云教授作者:潘存云教授角加速度:角加速度:atBA/lAB同样可以推得:同样可以推得:ab/lABbc/lBC a c/lCA称称pabcpabc为为加速度多边加速度多边形形pp极点极点 abcABC 加速度多边形的特性加速度多边形的特性(与速度与速度多边

    18、形类似多边形类似):联接联接p点和任一点的向量代表该点和任一点的向量代表该 点在机构图中同名点的绝对加速点在机构图中同名点的绝对加速 度,指向为度,指向为p该点。该点。方向:逆方向:逆a b”b/l ABbb”apc”c”cBAC作者:潘存云教授作者:潘存云教授BAC联接任意两点的向量代表该两点在联接任意两点的向量代表该两点在机构图中同名点机构图中同名点 的相对加速度,指向与速度的下标相反。如的相对加速度,指向与速度的下标相反。如ab代代 表表aBA而不是而不是aAB,bc aCB,ca aAC。abcabcABCABC,称,称abcabc为为ABCABC的的 加速度影象,称加速度影象,称ab

    19、cabc为为ABCABC的的加加速速 度影象,两者相似且字母顺序一致。度影象,两者相似且字母顺序一致。极点极点pp代表机构中所有代表机构中所有加加速度为零的点速度为零的点 的影象的影象。影像的用途:影像的用途:由两点的由两点的加加速度速度求任意点的求任意点的加加速度。速度。例如例如:求求BCBC中间点中间点E E的的加加速度速度a aE Ebc上中间点e为E点的影象,联接pe就是aE。bb”apc”c”cE 常用相对切向加速度来求构件的角加速度。常用相对切向加速度来求构件的角加速度。eB1 13 32 2AC12BB12(2)两构件重合点的速度及加速度的关系两构件重合点的速度及加速度的关系 1

    20、)回转副回转副速度关系速度关系 VB1=VB2 aB1=aB2 VB1VB2 aB1aB2具体情况由其他已知条件决定具体情况由其他已知条件决定仅考虑移动副2)高副和移动副高副和移动副 VB3VB2+VB3B2pb2b3 VB3B2 的方向的方向:b2 bb3 3 3 3=vpb3/lCB3 31 1大小:大小:方向:方向:?BCBC公共点公共点作者:潘存云教授3 3B1 13 32 2AC1 1pb2b3ak B3B2 加速度关系加速度关系aB3 apb3,结论:结论:当两构件构成移动副时,重当两构件构成移动副时,重合点的加速度不相等,且移动副有合点的加速度不相等,且移动副有转动分量时,必然存

    21、在哥氏加速度转动分量时,必然存在哥氏加速度分量。分量。+akB3B2 大小:大小:方向:方向:b2kb 33akB3B2的方向:的方向:VB3B2 沿沿3 3 方向转过方向转过9090 3 3atB3/lBCBCab3b3/lBCarB3B2 akb3 B C?2 23 3l lBCBC BCBC?l1 12 21 1BABA?BCBC2 2VB3B23 3 aB3=anB3+atB3=aB2+arB3B2此方程对吗?b”3p图解得:图解得:作者:潘存云教授c2.用矢量方程图解法作机构速度和加速度分析用矢量方程图解法作机构速度和加速度分析已知摆式运输机运动简图、各构件尺寸、已知摆式运输机运动简

    22、图、各构件尺寸、2 2,解:解:1)速度分析速度分析 VBLAB2 2,VVB/pb VC VB+VCB ABCDEF123456b求:求:V VF F、aF F 3 3、4 4、5 5 3 3、4 4、5 52 2大小:大小:?方向:方向:CD CD p?BCBC作者:潘存云教授作者:潘存云教授e从图解上量得从图解上量得:VCB Vbc VCVpc 方向:方向:bc方向:顺时针方向:顺时针4 4 VC/lCDCD方向:逆时针方向:逆时针ABCDEF1234562 23 34 4VC VB+VCB cb利用速度影象,可求得影象点利用速度影象,可求得影象点e。图解上式得图解上式得pef:VFVE

    23、+VFE 求构件求构件6的速度的速度:VFE v ef e f 方向:方向:pf 5 5VFE/lFEFE方向:顺时针方向:顺时针 大小:大小:?方向:方向:/DFcb3 3 VCB/lCBCB方向:方向:pcf?EFEFVF v pf p5 5作者:潘存云教授作者:潘存云教授作者:潘存云教授ec”bcc”ABCDEF123456加速度分析:加速度分析:?24 lCDCD?CD23 lCB CB?BC2 23 34 4aC=anC+atC Pcbfp作图求解得作图求解得:4 4=atC/lCDCD 3 3=atCB/lCBCB 方向:逆时针方向:逆时针 方向:逆时针方向:逆时针 aC=a pc

    24、=aB+anCB+atCB 不可解,再以B点为牵连点,列出C点的方程利用影象法求得利用影象法求得e点的象点的象e4 43 3aBC=a bc 方向:方向:bc方向:方向:pc c得:得:aE=a pe 5 5作者:潘存云教授作者:潘存云教授c”bcc”ABCDEF123456求构件求构件6的加速度:的加速度:?/DF2 25 5 lFEFE FE?BC2 23 34 4Pcbfp作图求解得作图求解得:5 5=atFE/lFEFE 方向:顺方向:顺 aF=a pf 4 43 35 5atFE=a f”f 方向:方向:f”f方向:方向:pf aF=aE +anFE+atFE eff”5 5注意注意

    25、:正确判断哥氏加速度的存在及其方向正确判断哥氏加速度的存在及其方向牵连运动为平动时,无牵连运动为平动时,无ak。当两构件构成移动副:当两构件构成移动副:且牵连运动为转动时,存在且牵连运动为转动时,存在ak;作者:潘存云教授A B C D E F G 1 2 3 4 5 6 34综合运用瞬心法和矢量方程图解法综合运用瞬心法和矢量方程图解法 对复杂机构进行速度分析对复杂机构进行速度分析 对于某些复杂机构,单独运用瞬心法或矢量方程图解法解题时,都很困难,但将两者结合起来用,将使问题的到简化。如图示如图示级机构中,已级机构中,已知机构尺寸和知机构尺寸和2 2,进行,进行运动分析。运动分析。不可解!不可

    26、解!VC=VB+VCB大小:大小:?方向:方向:?用瞬心法确定构件用瞬心法确定构件4 4的瞬心,的瞬心,P14tt VC=VB+VCB大小:大小:?方向:方向:可解!可解!此方法常用于此方法常用于级机构的运动分析。级机构的运动分析。确定确定C C点的方向后,则有:点的方向后,则有:35 用解析法作机构的运动分析用解析法作机构的运动分析图解法的缺点:图解法的缺点:分析结果精度低;分析结果精度低;随着计算机应用的普及,解析法得到了广泛的应用。随着计算机应用的普及,解析法得到了广泛的应用。作图繁琐、费时,不适用于一个运动周期的分析。作图繁琐、费时,不适用于一个运动周期的分析。解析法:解析法:复数矢量

    27、法、矩阵法、杆组法等。复数矢量法、矩阵法、杆组法等。不便于把机构分析与综合问题联系起来。不便于把机构分析与综合问题联系起来。思路:思路:由机构的几何条件,建立机构的位置方程,然后就由机构的几何条件,建立机构的位置方程,然后就位置方程对时间求一阶导数,得速度方程,求二阶导位置方程对时间求一阶导数,得速度方程,求二阶导数得到机构的加速度方程。数得到机构的加速度方程。作者:潘存云教授全部为转动副全部为转动副类型类型 简简 图图 运动副运动副A内:内:1个转动副个转动副外:外:2个移动移个移动移E内:内:1个移动副个移动副外:外:1转转1移移D内:内:1个转动副个转动副外:外:1转转1移移C内:内:1

    28、个移动副个移动副外:外:2个转动副个转动副Bv杆组分析法杆组分析法 原理:原理:将基本杆组的运动分析模型编成通用的子程序,根据机构将基本杆组的运动分析模型编成通用的子程序,根据机构的组成情况依次调用杆组分析子程序,就能完成整个机构的运动的组成情况依次调用杆组分析子程序,就能完成整个机构的运动分析。分析。特点:特点:运动学模型是通用的,适用于任意复杂的平面连杆机构。运动学模型是通用的,适用于任意复杂的平面连杆机构。本章重点:本章重点:1.瞬心位置的确定(三心定理);瞬心位置的确定(三心定理);2.用瞬心法求构件的运动参数;用瞬心法求构件的运动参数;3.用矢量方程图解法作机构速度和加速度分析用矢量方程图解法作机构速度和加速度分析,熟练掌握影像法及其应用;熟练掌握影像法及其应用;作业作业:3-1,3-2,3-4,3-10,3-13

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:机械原理第3章平面机构的运动分析课件.ppt
    链接地址:https://www.163wenku.com/p-4502287.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库