苏教版高三数学复习课件87-双曲线.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《苏教版高三数学复习课件87-双曲线.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 苏教版高三 数学 复习 课件 87 双曲线 下载 _其他_数学_小学
- 资源描述:
-
1、【命题预测】【命题预测】1本讲主要考查椭圆的基本概念和性质,用待定系数法求椭圆方程,椭圆第本讲主要考查椭圆的基本概念和性质,用待定系数法求椭圆方程,椭圆第一、二定义的综合运用,椭圆中各量的计算,关于离心率一、二定义的综合运用,椭圆中各量的计算,关于离心率e的题目为热点的题目为热点问题,各种题型均有考查,属中档题问题,各种题型均有考查,属中档题2考纲要求掌握椭圆的定义、标准方程和椭圆的简单几何性质,所以,近几考纲要求掌握椭圆的定义、标准方程和椭圆的简单几何性质,所以,近几年的高考试题一直在客观题中考查定义、性质的理解和运用,在解答题中年的高考试题一直在客观题中考查定义、性质的理解和运用,在解答题
2、中考查轨迹问题和直线与椭圆的位置关系考查轨迹问题和直线与椭圆的位置关系3在解析几何与向量的交汇处设计高考题,是近年来高考一个新的亮在解析几何与向量的交汇处设计高考题,是近年来高考一个新的亮 点,主点,主要考查:要考查:(1)将向量作为工具解答双曲线问题;将向量作为工具解答双曲线问题;(2)以解析几何为载体,将向以解析几何为载体,将向量作为条件融入题设条件中量作为条件融入题设条件中【应试对策】【应试对策】1注意双曲线中一些基本量及其关系:注意双曲线中一些基本量及其关系:c2a2b2,e ,两,两准线间的距离为准线间的距离为 ,焦点到相应准线的距离为,焦点到相应准线的距离为 ,焦点到一条渐近线的,
3、焦点到一条渐近线的距离为距离为b,过焦点且垂直于实轴的弦长称为通径,即通径为,过焦点且垂直于实轴的弦长称为通径,即通径为 等,这些量等,这些量及其关系不会因坐标轴选择而改变及其关系不会因坐标轴选择而改变 2求双曲线的方程常用待定系数法,解题时应注意先确定焦点位置,若焦求双曲线的方程常用待定系数法,解题时应注意先确定焦点位置,若焦点不确定,则应分类讨论如不清楚焦点的位置,可设方程为点不确定,则应分类讨论如不清楚焦点的位置,可设方程为ax2by21(ab0);若已知双曲线的渐近线方程;若已知双曲线的渐近线方程y x,则设双曲线方程为,则设双曲线方程为 (0,且,且为参数为参数),从而避免讨论和复杂
4、的计算,从而避免讨论和复杂的计算3对双曲线定义的理解,应注意有关条件对双曲线定义的理解,应注意有关条件(2a1)渐近线渐近线yy等轴双曲线等轴双曲线实轴和虚轴实轴和虚轴 的双曲线叫做等轴双曲线的双曲线叫做等轴双曲线准线方程准线方程xy顶点顶点等长等长探究:探究:双曲线的离心率的大小与双曲线双曲线的离心率的大小与双曲线“开口开口”大小有怎样的大小有怎样的 关系?关系?提示:提示:离心率越大,双曲线的离心率越大,双曲线的“开口开口”越大越大1已知双曲线的离心率为已知双曲线的离心率为2,焦点是,焦点是(4,0)、(4,0),则双曲线,则双曲线方程为方程为_解析:解析:由题知由题知c4,且,且 2,a
5、2,b2c2a212,双双曲线方程为曲线方程为 1.答案:答案:1且且PF1 PF21 3,则,则F1PF2的周长等于的周长等于_解析:解析:本题考查双曲线的方程及定义等知识由题意,本题考查双曲线的方程及定义等知识由题意,a3,b4,c5,根据题意,点,根据题意,点P在靠近焦点在靠近焦点F1的那支上,且的那支上,且PF23PF1,所,所以由双曲线的定义,以由双曲线的定义,PF2PF12PF12a6,PF13,PF29,故,故F1PF2的周长等于的周长等于391022.答案:答案:222设点设点P在双曲线在双曲线 1上,若上,若F1、F2为此双曲线的两个焦点,为此双曲线的两个焦点,3双曲线的渐近
6、线方程为双曲线的渐近线方程为y x,则双曲线的离心率为,则双曲线的离心率为_解析:解析:双曲线的渐近线方程为双曲线的渐近线方程为y x,或或 .当当 时,时,e ;当;当 时,时,e .答案:答案:4若双曲线若双曲线 1的渐近线方程为的渐近线方程为y ,则双曲线的焦点坐标是,则双曲线的焦点坐标是 _ 解析:解析:由双曲线方程得出其渐近线方程为由双曲线方程得出其渐近线方程为y ,m3,求得双曲线方,求得双曲线方 程为:程为:1,从而得到焦点坐标为从而得到焦点坐标为(,0),(,0)答案:答案:(,0),(,0)5双曲线的焦距是两准线间距离的双曲线的焦距是两准线间距离的4倍,则此双曲线的离心率等于
7、倍,则此双曲线的离心率等于_ 解析:解析:2c4 ,c24a2.e2 4,e2.答案:答案:2 【例【例1】在在MNG中,已知中,已知NG4.当动点当动点M满足条件满足条件sin Gsin N sin M 时,求动点时,求动点M的轨迹方程的轨迹方程 求双曲线的标准方程要确定焦点所在的坐标轴以及求双曲线的标准方程要确定焦点所在的坐标轴以及a2和和b2的值,其常用的方法的值,其常用的方法是待定系数法是待定系数法思路点拨:思路点拨:建立适当的直角坐标系,利用正弦定理把建立适当的直角坐标系,利用正弦定理把sin Gsin N sin M转化成边长之间的关系,并由此关系确定轨迹方程转化成边长之间的关系,
8、并由此关系确定轨迹方程 解解:以:以NG所在的直线为所在的直线为x轴,以线段轴,以线段NG的垂直平分线为的垂直平分线为y 轴建立直角轴建立直角坐标系坐标系sin G-sin N=由正弦定理,得由正弦定理,得MN-MG=由双曲线的定义知,点由双曲线的定义知,点M的轨迹是以的轨迹是以N、G为焦点的双曲线的右支为焦点的双曲线的右支(除去与除去与x轴的交点轴的交点)2c=4,2a=2,即,即c=2,a=1.b2=c2-a2=3.动点动点M的轨迹方程为的轨迹方程为x2 =1(x0,且,且y0)变式变式1:已已知定点知定点A(3,0)和定圆和定圆C:(x3)2y216,动圆和圆动圆和圆C相外相外 切,并且
9、过点切,并且过点A,求动圆圆心,求动圆圆心P的轨迹方程的轨迹方程 解:解:设设P的坐标为的坐标为(x,y)圆圆C与圆与圆P外切且过点外切且过点A,PC PA4.AC64,点点P的轨迹是以的轨迹是以C、A为焦点,为焦点,2a4的双曲线的右支的双曲线的右支a 2,c3,b2c2a25.1(x0)为动圆圆心为动圆圆心P的轨迹方程的轨迹方程1双曲线的性质的实质是围绕双曲线中的双曲线的性质的实质是围绕双曲线中的“六点六点”(两个焦点、两个顶两个焦点、两个顶点、两个虚轴的端点点、两个虚轴的端点),“四线四线”(两条对称轴、两条渐近线两条对称轴、两条渐近线),“两两形形”(中心、焦点以及虚轴端点构成的三角形
展开阅读全文