最新中考数学(深圳版)专题复习专题四-分类讨论问题课件.pptx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《最新中考数学(深圳版)专题复习专题四-分类讨论问题课件.pptx》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 最新 中考 数学 深圳 专题 复习 分类 讨论 问题 课件 下载 _二轮专题_中考复习_数学_初中
- 资源描述:
-
1、易百分原创出品易百分原创出品让考试变得简单让考试变得简单20172017中考总复习中考总复习专题四 分类讨论问题 分类讨论问题就是将要研究的数学对象按照一定的标准划分为若干不同的情形,然后再逐类进行研究和求解的一种数学解题思想.分类讨论问题是创新性问题之一,此类题综合性强,难度较大,在各地中考试题中多以压轴题出现,对考生的能力要求较高,具有选拔性.目前,深圳中考试卷中,常见的需分类讨论的知识点有三大类:(1)代数类:有绝对值、方程及根的定义,函数的定义以及点(坐标未给定)所在象限等.(2)几何类:有各种图形的位置关系,未明确对应关系的全等或相似的可能对应情况等.(3)综合类:代数与几何类分类情
2、况的综合运用.在数学中,我们常常需要根据研究对象性质的差异,分各种不同情况予以考查.这种分类思考的方法是一种重要的数学思想方法,同时也是一种解题策略.分类是按照数学对象的相同点和差异点,将数学对象区分为不同种类的思想方法,掌握分类的方法,领会其实质,对于加深基础知识的理解,提高分析问题、解决问题的能力是十分重要的.分类的原则:(1)分类中的每一部分是相互独立的;(2)一次分类按一个标准;(3)分类讨论应逐级进行.代数类常常涉及绝对值,方程及根的定义,分式、根式方程.【例题 1】已知|a|=5,|b|=3,且ab0,求a-b的值思路分析:根据已知条件和绝对值的性质,得a=5,b=3,且ab0,确
3、定a,b的符号,求出a-b的值解:|a|=5,|b|=3,a=5,b=3ab0,a,b异号当a=5,b=-3时,a-b=5-(-3)=8当a=-5,b=3时,a-b=-5-3=-8故a-b的值为8或-8题型一题型一 代数类代数类【例题 2】已知实数a,b分别满足a2+2a=2,b2+2b=2,求 的值.思路分析:根据题意,a,b可看作方程x2+2x-2=0的两根,则根据韦达定理得到a+b=-2,ab=-2,然后把原式变形得到原式=,再利用整体代入的方法计算即可.解:若ab,可知a,b为方程x2+2x-2=0的两实数根,由韦达定理,得a+b=-2,ab=-2,若a=b,则解关于a,b的方程,分别
4、得a=b=或a=b=,或综上所述,或 或 11ab11ababab1121.2ababab13 13 1113ab 1113.ab 1113ab 1113.ab 111.ab【例题 3】已知直角三角形两边x,y的长满足,则第三边长为.思路分析:直接利用绝对值的性质以及二次根式的性质进而得出x2=4,y2-5y+6=0,再利用分类讨论得出即可解答:两个非负数的和为0,这两个非负数都为0,x2-4=0且y2-5y+6=0.x2=4,(y-2)(y-3)=0.又x0,x=2,y=2或y=3.当x=2,y=2时,x,y都是直角边,第三边为斜边,根据勾股定理第三边为;当x=2,y=3,且x,y都是直角边
5、时,根据勾股定理第三边为斜边即;当x=2,y=3,且y为斜边时,根据勾股定理第三边为另一条直角边即 故答案为 或 或.22456xyy22456,xyy2 25.1313.2 25.【例题 4】(2016荆门市)已知3是关于x的方程x2-(m+1)x+2m=0的一个实数根,并且这个方程的两个实数根恰好是等腰三角形ABC的两条边的边长,则ABC的周长为()A7B10C11D10或11思路分析:把x=3代入已知方程求得m的值;然后通过解方程求得该方程的两根,即等腰三角形ABC的两条边长;最后利用三角形三边关系和三角形的周长公式求解即可解答:把x=3代入方程得9-3(m+1)+2m=0,解得m=6,
6、则原方程为x2-7x+12=0,解得x1=3,x2=4.因为这个方程的两个根恰好是等腰ABC的两条边长,所以当ABC的腰为4,底边为3时,ABC的周长为4+4+3=11;当ABC的腰为3,底边为4时,ABC的周长3+3+4=10综上所述,该ABC的周长为10或11故答案选DD几何类常涉及各种图形的位置关系,未明确对应关系的全等或相似的可能对应情况,函数的定义以及点(坐标未给定)所在象限等;函数定义域变化、函数图象未给出、函数对称性(反比例函数、二次函数的图象)等,分类讨论问题也常通过数形结合的方法来解答.题型二题型二 几何类几何类【例题 5】在半径为5 cm的 O中,弦AB=6 cm,弦CD=
7、8 cm,且ABCD,求AB与CD之间的距离.思路分析:两平行弦与圆心的位置关系一般有两种:两弦在圆心的同侧;两弦在圆心的异侧.解:过点O作AB,CD的垂线,分别交AB,CD于点E,F,连接OA,OC.在RtOAE中,在RtOCF中,2222534().OEOAAEcm2222543().OFOCCFcm当AB,CD在圆心O的同侧时,如图,AB和CD之间的距离为EF=4-3=1(cm);当AB,CD在圆心O的异侧时,如图,AB和CD之间的距离为EF=4+3=7(cm).AB和CD之间的距离为1 cm或7 cm.【例题 6】(2016台州市)定义:有三个内角相等的四边形叫三等角四边形(1)三等角
展开阅读全文