八年级第14章-一次函数复习课(公开课)课件-.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《八年级第14章-一次函数复习课(公开课)课件-.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 年级 14 一次 函数 复习 公开 课件
- 资源描述:
-
1、第十四章第十四章 一次函数复习一次函数复习回顾 小结一、知识结构一、知识结构1.叫变量叫变量,叫常量叫常量.2.函数定义:函数定义:数值发生变化的量数值发生变化的量数值始终不变的量数值始终不变的量 在一个变化过程中,如果有两在一个变化过程中,如果有两个变量个变量x x与与y y,并且对于,并且对于x x的每一个的每一个确定的值,确定的值,y y都有都有唯一唯一确定的值与确定的值与其对应,那么我们就说其对应,那么我们就说x x是自变量,是自变量,y y是是x x的函数的函数.(所用方法所用方法:描点法描点法)3.3.函数的图象:函数的图象:对于一个函数,如果把自变对于一个函数,如果把自变量与函数
2、的每对对应值分别作为点的横坐标和量与函数的每对对应值分别作为点的横坐标和纵坐标,那么坐标平面内由这些点组成的图形,纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象。就是这个函数的图象。列表法,列表法,解析式法解析式法,图象法图象法.5.5.函数的三种表示方法:函数的三种表示方法:4 4、描点法画图象的步骤:、描点法画图象的步骤:列表、描点、列表、描点、连线。连线。6 6、自变量的取值范围、自变量的取值范围(1 1)分母不为)分母不为0 0,(2 2)开偶次方的被开方数大于等于)开偶次方的被开方数大于等于0 0,(3 3)使实际问题有意义。)使实际问题有意义。1、求下列函数中自变量、
3、求下列函数中自变量x的取值范围的取值范围(1)y=x(x+3););(2)y=(3)y=(4)y=(5)y=843x12 xxx11532xx 2、下列四组函数中,表示同一函数的是()、下列四组函数中,表示同一函数的是()A、y=x与与y=B、y=x与与y=()2C、y=x与与y=x2/x D、y=x与与y=x3x3xxyo.3、画函数图象的步骤、画函数图象的步骤1列表列表 2描点描点 3连线连线例:画出例:画出Y=3x+3的图象的图象 x0-1y30 描点,连线如图:描点,连线如图:解:列表得:解:列表得:3-1 所有的一次函数的图象都是一条直所有的一次函数的图象都是一条直线。线。二、一次函
4、数的概念二、一次函数的概念1、一次函数的概念:、一次函数的概念:函数函数y=_(k、b为常数,为常数,k_)叫做叫做一次函数一次函数。当当b_时,函数时,函数y=_(k_)叫做叫做正比例函数。正比例函数。kx b =kx注意注意点:点:、解析式中自变量、解析式中自变量x的次数是的次数是_次,次,、比例系数比例系数_。1K0 2、正比例函数、正比例函数y=kx(k0)的图象是过点的图象是过点(_),),(_)的的_。3、一次函数、一次函数y=kx+b(k0)的图象是过点(的图象是过点(0,_),(_,0)的的_。0,01,k 一条直线一条直线b一条直线一条直线kb1.下列函数关系式中,那些是一次
5、函数?下列函数关系式中,那些是一次函数?哪些是正比例函数?哪些是正比例函数?(1)y=-x-4 (2)y=x2(3)y=2x(4)y=1x(5)y=x/2 (6)y=4/x (7)y=5x-3 (8)y=6x2-2x-1 4.一次函数的性质一次函数的性质函数函数 解析式解析式自变自变量的量的取值取值范围范围图象图象性质性质正比正比例例函数函数 k0k0 一次一次函数函数 k0k0 y=kx(k0)y=kx+b(k0)全体全体实数实数全体全体实数实数000b0b0b00b0b0b0当当k0时,时,y随随x的增大的增大而增大;而增大;当当k0时,时,y随随x的增的增大而减大而减少少.一次函数一次函
6、数y=kx+b的图象是一条直线,的图象是一条直线,其中其中k决定直线增减性,决定直线增减性,b决定直线与决定直线与y轴的交点位置轴的交点位置.k和和b决定了直线所在的象决定了直线所在的象限限.正比例函数是特殊的一次函数。正比例函数是特殊的一次函数。函数巧记妙语函数巧记妙语自变量的取值范围:分式分母不为零,偶次根下负不行;零次幂底数自变量的取值范围:分式分母不为零,偶次根下负不行;零次幂底数不为零,整式、奇次根全能行。不为零,整式、奇次根全能行。函数图像的移动规律函数图像的移动规律:若把一次函数解析式写成若把一次函数解析式写成y=k(x+0)+b,则用,则用下面的口诀下面的口诀“左右平移在括号左
7、右平移在括号,上下平移在末稍上下平移在末稍,左正右负须牢记左正右负须牢记,上正上正下负错不了下负错不了”。一次函数图像与性质口诀一次函数图像与性质口诀:一次函数是直线,图像经过仨象限;正比一次函数是直线,图像经过仨象限;正比例函数更简单例函数更简单,经过原点一直线;两个系数经过原点一直线;两个系数k与与b,作用之大莫小看,作用之大莫小看,k是是斜率定夹角斜率定夹角,b与与Y轴来相见轴来相见,k为正来右上斜为正来右上斜,x增减增减y增减;增减;k为负来左下为负来左下展展,变化规律正相反;变化规律正相反;k的绝对值越大的绝对值越大,线离横轴就越远。线离横轴就越远。函数学习口决:正比例函数是直线,图
8、象一定过圆点,函数学习口决:正比例函数是直线,图象一定过圆点,k的正负是关的正负是关键,决定直线的象限,负键,决定直线的象限,负k经过二四限,经过二四限,x增大增大y在减,上下平移在减,上下平移k不变,不变,由此得到一次线,向上加由此得到一次线,向上加b向下减,图象经过三个象限,两点决定一向下减,图象经过三个象限,两点决定一条线,选定系数是关键。条线,选定系数是关键。回顾 小结7.两直线的位置关系两直线的位置关系 若直线若直线l1和和l2的解析式为的解析式为y=k1X+b1和和y=k2X+b2,它们的它们的位置关系可由其系数确定:位置关系可由其系数确定:k1 k2l1和和l2相交相交(l1和和
9、l2有且只有一个交点)有且只有一个交点)k1 k2l1和和l2平行平行(l1和和l2没有交点)没有交点)b1 b2k1 k2l1和和l2重合重合b1 b2二、做好读图准备:二、做好读图准备:熟记熟记k、b与直线的位置关系与直线的位置关系观察下面观察下面4个图,说说个图,说说k、b的符号的符号xyoyxoyxoyxok0k0,b0,b0k0,b0)在同一坐标系中的图象可能在同一坐标系中的图象可能是(是()xyoxyoxyoxyoABCD1.已知一次函数已知一次函数y=kx+b,y随着随着x的增大而减小的增大而减小,且且kb0,则则在直角坐标系内它的大致图象是在直角坐标系内它的大致图象是()(A)
10、(B)(C)(D)A图象辨析图象辨析3、如图,已知一次函数、如图,已知一次函数y=kx+b的图的图像像,当当x0 B.y0 C.-2y0 D.y-2.4、一次函数一次函数y=(m2-4)x+(1-m)和和y=(m+2)x+(m2-3)的图像的图像与与y轴分别交于轴分别交于P,Q两点,若两点,若P、Q点关于点关于x轴对称,则轴对称,则m=。-1D5、已知函数、已知函数y=-x+2.当当-1x1时时,y的取值范围的取值范围_.1yx2时,时,y1y2,则,则m的的范围是范围是l直线直线y=3x+b与与y轴的交点的纵坐标为轴的交点的纵坐标为-2,则这条,则这条直线一定不过直线一定不过 象限象限减小减
11、小一、二、四一、二、四0一、三、四一、三、四m2二二练习练习 1.已知函数已知函数y=(m+1)x 是正比例函数,是正比例函数,并且它的图象经过二,四象限,则这个函并且它的图象经过二,四象限,则这个函 数的解析数的解析 式为式为_.|m|-12.如果一次函数如果一次函数y=kx+b的图象经过第一、的图象经过第一、三、四象限,则三、四象限,则k0,b02、若正比例函数、若正比例函数y=(m-1)x m 2 -3的图象经过第的图象经过第二、四象限,则二、四象限,则m=()()3、若一次函数、若一次函数y=-x2m2 -7+m-2的图象不经过第三的图象不经过第三象限,则象限,则m=()()4、已知、
12、已知m是整数,且一次函数是整数,且一次函数y=(m+4)x+m+2的图象不经过第二象限,则的图象不经过第二象限,则m=()5、若正比例函数、若正比例函数y=(1-2m)x的图象经过点的图象经过点A(x1,y1)和点)和点B(x2,y2),当),当x1y2,则则m的取值范围是的取值范围是()m1/2-2或或-38如图所示的图象分别给出了如图所示的图象分别给出了x与与y的对应关系,其中的对应关系,其中y是是x的函数的是(的函数的是()6甲、乙两地相距甲、乙两地相距S千米,某人行完全程所用的时间千米,某人行完全程所用的时间t(时)与他的速度(时)与他的速度v(千米(千米/时)满足时)满足vt=S,在
13、这个变化过,在这个变化过程中,下列判断中错误的是程中,下列判断中错误的是 ()AS是变量是变量 Bt是变量是变量 Cv是变量是变量 DS是常量是常量7如图,足球由正五边形皮块(黑色)和正六边形皮如图,足球由正五边形皮块(黑色)和正六边形皮块(白色)缝成,试用正六边形的块数块(白色)缝成,试用正六边形的块数x表示正五边形表示正五边形的块数的块数y,并指出其中的变量和常量(提示:每一个,并指出其中的变量和常量(提示:每一个白色皮块周围连着三个黑色皮块)白色皮块周围连着三个黑色皮块)9、填空题:、填空题:(1)有下列函数:有下列函数:,=,。其中过原点的直。其中过原点的直线是线是_;函数;函数y 随
14、随x 的增大而增大的是的增大而增大的是_;函;函数数y 随随x 的增大而减小的是的增大而减小的是_;图象在第一、二、三;图象在第一、二、三象限的是象限的是_。56xy4 xy34 xy、(2)、如果一次函数、如果一次函数y=kx-3k+6的图象经过原点,那么的图象经过原点,那么k的值为的值为_。(3)、已知、已知y-1与与x成正比例,且成正比例,且x=2时,时,y=4,那么,那么y与与x之间的函数关系式为之间的函数关系式为_。123xyk=2 10、求下图中直线的函数解析式、求下图中直线的函数解析式264-2解:设该正比例函数解析式解:设该正比例函数解析式为为 y=kx 图象过点(图象过点(1
15、,2)k=2 该正比例函数解析式该正比例函数解析式为为 y=2xxy264-2-6-4-4-6o22 2 2、下图 l1 l2 分别是龟兔赛跑中路程与时间之间的函数图象。做一做做一做新龟兔赛跑新龟兔赛跑 s/米米(1)这一次是 米赛跑。12345O O10020120406080t/分分687(2)表示兔子的图象是 。-11291011-3-2l1l2100l2-4根据图象可以知道:s/米米(3)当兔子到达终点时,乌龟距终点还有 米。l1l212345O O10020120406080t/分分687(4)乌龟要与兔子同时到达终点乌龟要先跑 米。(5)乌龟要先到达终点,至少要比兔子早跑 分钟。-
展开阅读全文