北京专用高考数学一轮复习第八章立体几何84直线平面垂直的判定与性质课件.pptx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《北京专用高考数学一轮复习第八章立体几何84直线平面垂直的判定与性质课件.pptx》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 北京 专用 高考 数学 一轮 复习 第八 立体几何 84 直线 平面 垂直 判定 性质 课件 下载 _一轮复习_高考专区_数学_高中
- 资源描述:
-
1、8.4直线、平面垂直的判定与性质高考数学高考数学(北京专用)A A组自主命题组自主命题北京卷题组北京卷题组五年高考1.(2019北京理,12,5分)已知l,m是平面外的两条不同直线.给出下列三个论断:lm;m;l.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:.答案答案若lm,l,则m(答案不唯一)解析解析本题考查线面平行、垂直的位置关系,考查了逻辑推理能力和空间想象能力.把其中两个论断作为条件,余下的一个论断作为结论,共有三种情况.对三种情况逐一验证.作为条件,作为结论时,还可能l或l与斜交;作为条件,作为结论和作为条件,作为结论时,容易证明命题成立.易错警示易错警示
2、容易忽视l,m是平面外的两条不同直线这一条件,导致判断错误.2.(2019北京理,16,14分)如图,在四棱锥P-ABCD中,PA平面ABCD,ADCD,ADBC,PA=AD=CD=2,BC=3.E为PD的中点,点F在PC上,且=.(1)求证:CD平面PAD;(2)求二面角F-AE-P的余弦值;(3)设点G在PB上,且=.判断直线AG是否在平面AEF内,说明理由.PFPC13PGPB23解析解析本题主要考查线面垂直的判定和性质,二面角的求法;考查学生的空间想象能力;以四棱锥为背景考查直观想象的核心素养.(1)因为PA平面ABCD,所以PACD,又因为ADCD,所以CD平面PAD.(2)过A作A
3、D的垂线交BC于点M.因为PA平面ABCD,所以PAAM,PAAD.如图建立空间直角坐标系A-xyz,则A(0,0,0),B(2,-1,0),C(2,2,0),D(0,2,0),P(0,0,2).因为E为PD的中点,所以E(0,1,1).所以=(0,1,1),=(2,2,-2),=(0,0,2).所以=,=+=.设平面AEF的法向量为n=(x,y,z),则即令z=1,则y=-1,x=-1.于是n=(-1,-1,1).又因为平面PAD的法向量为p=(1,0,0),所以cos=-.由题知,二面角F-AE-P为锐角,所以其余弦值为.(3)直线AG在平面AEF内.AEPCAPPF13PC2 22,3
4、33AFAPPF2 2 4,3 3 3AE0,AF0,nn0,2240.333yzxyz|n pnp3333因为点G在PB上,且=,=(2,-1,-2),所以=,=+=.由(2)知,平面AEF的法向量n=(-1,-1,1).所以n=-+=0.所以直线AG在平面AEF内.PGPB23PBPG23PB424,333AGAPPG42 2,33 3AG432323AG思路分析思路分析(1)要证线面垂直,需证线与平面内的两条相交直线垂直.(2)建系求两平面的法向量,利用向量法求二面角的余弦值.(3)通过计算得出n,结合A平面AEF可证明AG平面AEF.一题多解一题多解(2)PA=AD且E为PD的中点,A
5、EPD.由(1)知CDAE,又PDCD=D,AE平面PCD,又EF平面PCD,AEEF,故可知FEP为二面角F-AE-P的平面角.PE=,PF=,cosCPD=,sinCPD=,EF2=+()2-2=,EF=,在PEF中,由正弦定理得=,即sinFEP=,且FEP为锐角,cosFEP=.2PD23PC2 33PDPC633322 33222 33632363sinEFCPDsinPFFEP2 33336363261333故二面角F-AE-P的余弦值为.333.(2018北京文,18,14分)如图,在四棱锥P-ABCD中,底面ABCD为矩形,平面PAD平面ABCD,PAPD,PA=PD,E,F分
6、别为AD,PB的中点.(1)求证:PEBC;(2)求证:平面PAB平面PCD;(3)求证:EF平面PCD.证明证明(1)因为PA=PD,E为AD的中点,所以PEAD.因为底面ABCD为矩形,所以BCAD.所以PEBC.(2)因为底面ABCD为矩形,所以ABAD.又因为平面PAD平面ABCD,所以AB平面PAD.所以ABPD.又因为PAPD,所以PD平面PAB.所以平面PAB平面PCD.(3)取PC中点G,连接FG,DG.因为F,G分别为PB,PC的中点,所以FGBC,FG=BC.因为ABCD为矩形,且E为AD的中点,所以DEBC,DE=BC.所以DEFG,DE=FG.所以四边形DEFG为平行四
7、边形.所以EFDG.又因为EF 平面PCD,DG平面PCD,所以EF平面PCD.12124.(2017北京文,18,14分)如图,在三棱锥P-ABC中,PAAB,PABC,ABBC,PA=AB=BC=2,D为线段AC的中点,E为线段PC上一点.(1)求证:PABD;(2)求证:平面BDE平面PAC;(3)当PA平面BDE时,求三棱锥E-BCD的体积.解析解析本题考查线面垂直的判定和性质,面面垂直的判定及线面平行的性质,三棱锥的体积.考查空间想象能力.(1)证明:因为PAAB,PABC,所以PA平面ABC.又因为BD平面ABC,所以PABD.(2)证明:因为AB=BC,D为AC中点,所以BDAC
8、.由(1)知,PABD,所以BD平面PAC.所以平面BDE平面PAC.(3)因为PA平面BDE,平面PAC平面BDE=DE,所以PADE.因为D为AC的中点,所以DE=PA=1,BD=DC=.由(1)知,PA平面ABC,所以DE平面ABC.122所以三棱锥E-BCD的体积V=BDDCDE=.16135.(2016北京文,18,14分)如图,在四棱锥P-ABCD中,PC平面ABCD,ABDC,DCAC.(1)求证:DC平面PAC;(2)求证:平面PAB平面PAC;(3)设点E为AB的中点.在棱PB上是否存在点F,使得PA平面CEF?说明理由.解析解析(1)证明:因为PC平面ABCD,所以PCDC
9、.(2分)又因为DCAC,ACPC=C,所以DC平面PAC.(4分)(2)证明:因为ABDC,DCAC,所以ABAC.(6分)因为PC平面ABCD,所以PCAB.(7分)又ACPC=C,所以AB平面PAC.又AB平面PAB,所以平面PAB平面PAC.(9分)(3)棱PB上存在点F,使得PA平面CEF.(10分)证明如下:取PB的中点F,连接EF,CE,CF.因为E为AB的中点,所以EFPA.(13分)又因为PA 平面CEF,所以PA平面CEF.(14分)思路分析思路分析(1)证出PCDC后易证DC平面PAC.(2)先证ABAC,PCAB,可证出AB平面PAC,进而由面面垂直的判定定理可证.(3
10、)此问为探究性问题,求解时可构造面CEF,使得PA平行于平面CEF内的一条线,由于点E为AB的中点,所以可取PB的中点,构造中位线.6.(2013北京文,17,14分)如图,在四棱锥P-ABCD中,ABCD,ABAD,CD=2AB,平面PAD底面ABCD,PAAD.E和F分别是CD和PC的中点.求证:(1)PA底面ABCD;(2)BE平面PAD;(3)平面BEF平面PCD.证明证明(1)因为平面PAD底面ABCD,且PA垂直于这两个平面的交线AD,所以PA底面ABCD.(2)因为ABCD,CD=2AB,E为CD的中点,所以ABDE,且AB=DE.所以四边形ABED为平行四边形.所以BEAD.又
11、因为BE 平面PAD,AD平面PAD,所以BE平面PAD.(3)因为ABAD,而且四边形ABED为平行四边形,所以BECD,ADCD.由(1)知PA底面ABCD,所以PACD.又PAAD=A,所以CD平面PAD.所以CDPD.因为E和F分别是CD和PC的中点,所以PDEF.所以CDEF.又EFBE=E,所以CD平面BEF.又CD平面PCD,所以平面BEF平面PCD.思路分析思路分析(1)由面面垂直的性质定理可证.(2)根据线面平行的判定定理把问题转化为证明线线平行,即证BEAD,故需证四边形ABED为平行四边形.(3)利用(1)的结论,通过证线面垂直,即CD平面BEF,即可证得平面BEF平面P
12、CD.7.(2013北京,17,14分)如图,在三棱柱ABC-A1B1C1中,AA1C1C是边长为4的正方形,平面ABC平面AA1C1C,AB=3,BC=5.(1)求证:AA1平面ABC;(2)求二面角A1-BC1-B1的余弦值;(3)证明:在线段BC1上存在点D,使得ADA1B.并求的值.1BDBC解析解析(1)因为AA1C1C为正方形,所以AA1AC.因为平面ABC平面AA1C1C,且AA1垂直于这两个平面的交线AC,所以AA1平面ABC.(2)由(1)知AA1AC,AA1AB.由题知AB=3,BC=5,AC=4,所以ABAC.如图,以A为原点建立空间直角坐标系A-xyz,则B(0,3,0
13、),A1(0,0,4),B1(0,3,4),C1(4,0,4).设平面A1BC1的法向量为n=(x,y,z),则即令z=3,则x=0,y=4,所以n=(0,4,3).同理可得,平面B1BC1的一个法向量为m=(3,4,0).所以cos=.111A0,A C0,nBn340,40.yzx|n mn m1625由题知二面角A1-BC1-B1为锐角,所以二面角A1-BC1-B1的余弦值为.(3)设D(x,y,z)是直线BC1上一点,且=.所以(x,y-3,z)=(4,-3,4).解得x=4,y=3-3,z=4.所以=(4,3-3,4).由=0,即9-25=0,解得=.因为0,1,所以在线段BC1上存
14、在点D,使得ADA1B.此时,=.1625BD1BCADAD1AB9259251BDBC925思路分析思路分析(1)利用面面垂直的性质定理得出线面垂直;(2)建立空间直角坐标系,求出两个半平面的法向量m,n,利用cos=求值;(3)利用线线垂直可得=0,再利用向量的坐标运算可求线段比例.|n mn mAD1A B评析评析本题主要考查面面垂直的性质定理、空间角的求法以及探索性问题的求证,考查空间向量在立体几何中的应用,体现了向量法的便捷性,考查学生的空间想象和运算求解能力,正确建立空间直角坐标系和准确求出各点坐标是正确解题的前提,正确利用向量共线表示点D的坐标是解决第(3)问的关键.B B组统一
15、命题组统一命题省省(区、市区、市)卷题组卷题组考点一线面垂直的判定与性质考点一线面垂直的判定与性质1.(2017课标全国,10,5分)在正方体ABCD-A1B1C1D1中,E为棱CD的中点,则()A.A1EDC1B.A1EBDC.A1EBC1D.A1EAC答案答案CA1B1平面BCC1B1,BC1平面BCC1B1,A1B1BC1,又BC1B1C,且B1CA1B1=B1,BC1平面A1B1CD,又A1E平面A1B1CD,BC1A1E.故选C.2.(2018课标全国文,19,12分)如图,在三棱锥P-ABC中,AB=BC=2,PA=PB=PC=AC=4,O为AC的中点.(1)证明:PO平面ABC;
16、(2)若点M在棱BC上,且MC=2MB,求点C到平面POM的距离.2解析解析(1)因为AP=CP=AC=4,O为AC的中点,所以OPAC,且OP=2.连接OB,因为AB=BC=AC,所以ABC为等腰直角三角形,且OBAC,OB=AC=2.由OP2+OB2=PB2知,OPOB.由OPOB,OPAC知PO平面ABC.(2)作CHOM,垂足为H.又由(1)可得OPCH,所以CH平面POM.故CH的长为点C到平面POM的距离.由题设可知OC=AC=2,CM=BC=,ACB=45.所以OM=,CH=.3221212234 232 53sinOC MCACBOM4 55所以点C到平面POM的距离为.4 5
17、53.(2017课标全国,19,12分)如图,四面体ABCD中,ABC是正三角形,AD=CD.(1)证明:ACBD;(2)已知ACD是直角三角形,AB=BD.若E为棱BD上与D不重合的点,且AEEC,求四面体ABCE与四面体ACDE的体积比.解析解析(1)证明:取AC的中点O,连接DO、BO.因为AD=CD,所以ACDO.又由于ABC是正三角形,所以ACBO.又DOBO=O,AC平面DOB,ACBD.(2)解法一:连接EO.由(1)及题设知ADC=90,所以DO=AO.在RtAOB中,BO2+AO2=AB2.又AB=BD,所以BO2+DO2=BO2+AO2=AB2=BD2,故DOB=90.由题
18、设知AEC为直角三角形,所以EO=AC.又ABC是正三角形,且AB=BD,所以EO=BD.故E为BD的中点,从而E到平面ABC的距离为D到平面ABC的距离的,四面体ABCE的体积为四面体ABCD的体积的,即四面体ABCE与四面体ACDE的体积之比为1 1.12121212解法二:由已知可得ABD CBD,则CBE=ABE,所以CEB AEB,则AE=CE.又AECE,所以CAE=ACE=45,又ACD是直角三角形,且AD=CD,所以DAC=DCA=45,又AC为公共边,所以AEC ADC.由此可设AD=CD=AE=CE=a,则AC=AB=BD=a.在AED和BAD中,AED=ADE=BAD,则
19、等腰三角形AED相似于等腰三角形BAD,所以=,由此得DE=a,即E为BD中点,ABBCADDCBDBD2BDAEADDE22D到平面AEC的距离等于B到平面AEC的距离,所以四面体ABCE与四面体ACDE的体积比为1 1.难点突破难点突破(1)四面体ABCE与四面体ACDE的体积比转化为四面体ABCE与四面体ABCD的体积比.(2)观察到两个四面体共底面ACE,将体积比转化为相应高之比,难点在于发现E为BD的中点及其证明.4.(2017天津文,17,13分)如图,在四棱锥P-ABCD中,AD平面PDC,ADBC,PDPB,AD=1,BC=3,CD=4,PD=2.(1)求异面直线AP与BC所成
20、角的余弦值;(2)求证:PD平面PBC;(3)求直线AB与平面PBC所成角的正弦值.解析解析本题主要考查两条异面直线所成的角、直线与平面垂直、直线与平面所成的角等基础知识.考查学生的空间想象能力、运算求解能力和推理论证能力.(1)如图,由ADBC,知DAP或其补角即为异面直线AP与BC所成的角.因为AD平面PDC,所以ADPD.在RtPDA中,由题意得AP=,故cosDAP=.所以,异面直线AP与BC所成角的余弦值为.(2)证明:因为AD平面PDC,直线PD平面PDC,所以ADPD.又因为BCAD,所以PDBC,又PDPB,BCPB=B,BC,PB平面PBC,所以PD平面PBC.(3)如图,2
21、2ADPD5ADAP5555过点D作AB的平行线交BC于点F,连接PF,则DF与平面PBC所成的角等于AB与平面PBC所成的角.因为PD平面PBC,故PF为DF在平面PBC上的射影,所以DFP为直线DF和平面PBC所成的角.由于ADBC,DFAB,故BF=AD=1,由已知,得CF=BC-BF=2.又ADDC,故BCDC,在RtDCF中,DF=2,22CDCF5在RtDPF中,可得sinDFP=.所以,直线AB与平面PBC所成角的正弦值为.PDDF5555方法点拨方法点拨1.求异面直线所成角的步骤:(1)作:通过作平行线得到相交直线;(2)证:证明所作角为异面直线所成的角(或其补角);(3)求:
22、解三角形,求出所作的角.如果求得的角是锐角或直角,则它就是所求的角,如果求出的角是钝角,则它的补角为所求的角.2.求直线与平面所成角的方法:(1)定义法:关键是找出斜线在平面内的射影;(2)公式法:sin=(其中为直线与平面所成角,h为斜线上一点到平面的距离,l为该点到斜足的距离).hl5.(2016课标全国,19,12分)如图,菱形ABCD的对角线AC与BD交于点O,AB=5,AC=6,点E,F分别在AD,CD上,AE=CF=,EF交BD于点H.将DEF沿EF折到DEF的位置,OD=.(1)证明:DH平面ABCD;(2)求二面角B-DA-C的正弦值.5410解析解析(1)证明:由已知得ACB
23、D,AD=CD.又由AE=CF得=,故ACEF.因此EFHD,从而EFDH.(2分)由AB=5,AC=6得DO=BO=4.由EFAC得=.所以OH=1,DH=DH=3.于是DH2+OH2=32+12=10=DO2,故DHOH.(4分)又DHEF,而OHEF=H,所以DH平面ABCD.(5分)(2)如图,以H为坐标原点,的方向为x轴正方向,建立空间直角坐标系H-xyz.则H(0,0,0),A(-3,-1,0),B(0,-5,0),C(3,-1,0),D(0,0,3),AEADCFCD22ABAOOHDOAEAD14HF=(3,-4,0),=(6,0,0),=(3,1,3).(6分)设m=(x1,
24、y1,z1)是平面ABD的法向量,则即所以可取m=(4,3,-5).(8分)设n=(x2,y2,z2)是平面ACD的法向量,则即所以可取n=(0,-3,1).(10分)ABACADAB0,AD0,mm111113x4y0,3xy3z0,AC0,AD0,nn22226x0,3xy3z0,于是cos=-.sin=.因此二面角B-DA-C的正弦值是.(12分)|m nm n1450107 5252 95252 9525思路分析思路分析(1)利用已知条件及翻折的性质得出DHEF,利用勾股定理的逆定理得出DHOH,从而得出结论;(2)在第(1)问的基础上建立恰当的空间直角坐标系,从而求出两个半平面的法向
25、量,利用向量的夹角公式求二面角的余弦值,从而求出正弦值.评析评析本题主要考查翻折问题,线面垂直的证明以及用空间向量法求解二面角的基本知识和基本方法,考查学生的运算求解能力以及空间想象能力,求解各点的坐标是利用向量法解决空间问题的关键.6.(2015福建,20,12分)如图,AB是圆O的直径,点C是圆O上异于A,B的点,PO垂直于圆O所在的平面,且PO=OB=1.(1)若D为线段AC的中点,求证:AC平面PDO;(2)求三棱锥P-ABC体积的最大值;(3)若BC=,点E在线段PB上,求CE+OE的最小值.2解析解析(1)证明:在AOC中,因为OA=OC,D为AC的中点,所以ACDO.又PO垂直于
展开阅读全文