科技英语第二次课gametheory课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《科技英语第二次课gametheory课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 科技 英语 第二次 gametheory 课件
- 资源描述:
-
1、Unit 1 MathematicsWarming-upMathematics has a wide application,such as computer,economy.Now it has been broaden theoretically and applied to many social problems.It has driven a revolution in economic theory.It has also found application in sociology and psychology,and established links with evoluti
2、on and biology.One significant application is Game Theory which received special attention with the awarding of the Nobel Prize in economics to John Nash.Text A Game Theory 博弈论博弈论Game Theory Game theory is the mathematical analysis of any situation involving a conflict of interest,with the intent of
3、 indicating the optimal choices that,under given conditions,will lead to a desired outcome.It attempts to determine mathematically and logically the actions that“players”should take to secure the best outcomes for themselves in a wide array of“games”.它试图它试图以数学和逻辑的方法以数学和逻辑的方法帮助博弈者作出决策,使他帮助博弈者作出决策,使他们
4、在一系列纷繁复杂的博弈中保证利益的最大化。们在一系列纷繁复杂的博弈中保证利益的最大化。zero-sum games In game theory and economic theory,zero-sum describes a situation in which a participants gain or loss is exactly balanced by the losses or gains of the other participant(s).Examples:赌博赌博More typical are games with the potential for either mu
5、tual gain or mutual harm,as well as some conflict.更多具有代表性的例子可能会导致共同得利博弈和共更多具有代表性的例子可能会导致共同得利博弈和共同损失博弈,同样的情况还会发生在另外一些冲突中。同损失博弈,同样的情况还会发生在另外一些冲突中。Game theory was pioneered by Princeton mathematicianJohn von Neumann.更多具有代表性的例子可能会导致共同得利博弈和共同损更多具有代表性的例子可能会导致共同得利博弈和共同损失博弈,同样的情况还会发生在另外一些冲突中。失博弈,同样的情况还会发生在另
6、外一些冲突中。Princeton Princeton University is a private research university located in Princeton,New Jersey,United States.The school is one of the eight universities of the Ivy League and is considered one of the Colonial Colleges.John von Neumann A Hungarian-born American mathematics and made contributi
7、on to quantum physics,functional analysis,set theory,economics,computer science,topology,numerical analysis,hydrodynamics,statistics and may other mathematical fields as one of word historys outstanding mathematicians.When thinking about how others will respond,one must put oneself in their shoes,an
8、d think as they would;one should not impose ones own reasoning on them.在考虑其他博弈者会如何应对时,博弈者必须能设身处在考虑其他博弈者会如何应对时,博弈者必须能设身处地地换位思考,而不能把自己的主观判断强加于人。地地换位思考,而不能把自己的主观判断强加于人。tic-tac-toe 井字棋Tic-tack-toe is a pencil-and-paper game in which two players alternately put crosses(0)and circles()in one of the compar
9、tments of a square grid of nine spaces.The player who succeeds in placing three respective marks in a horizontal,vertical or diagonal row wins the game.In contrast to the linear chain of reasoning for sequential games,a game with simultaneous moves involves a logical circle.与连续策略博弈的线性思维不同,联立策略的博弈涉及与
10、连续策略博弈的线性思维不同,联立策略的博弈涉及逻辑循环。逻辑循环。John Nash John Forbes Nash Jr.(born June 13,1928)is an American mathematician and economist whose works in game theory,differential geometry,and partial differential equations have provided insight into the forces that govern chance and events inside complex systems
11、in daily life.Nash equilibrium 纳什均衡纳什均衡,又称为非合作博弈均衡又称为非合作博弈均衡 A Nash equilibrium,named after John Nash,is a set of strategies,one for each player,such that no player has incentive to unilaterally change her action.When we say that an outcome is an equilibrium,there is no presumption that each persons
12、 privately best choice will lead to a collectively optimal result.当我们把博弈的结果表述为一种均衡的时候,并不能假当我们把博弈的结果表述为一种均衡的时候,并不能假定博弈的每个参与者的个人最佳策略将带来共同的最优定博弈的每个参与者的个人最佳策略将带来共同的最优化结果。化结果。Nashs notion of equilibrium remains an incomplete solution to the problem of circular reasoning in simultaneous-move games.纳什关于均衡的
13、概念还不能完全解决联立策略博弈中逻纳什关于均衡的概念还不能完全解决联立策略博弈中逻辑循环的问题。辑循环的问题。And the dynamic process that can lead to an equilibrium is left unspecified.纳什均衡还没有清除地说明关于导致均衡的动态过程。纳什均衡还没有清除地说明关于导致均衡的动态过程。Prisoners dilemma 囚徒困境囚徒困境In game theory,the prisoners dilemma is a type of non-zero game in which two players can cooper
14、ate with or defect the other player.Prisoners dilemma Two suspects are arrested by the police.The police have insufficient evidence for a conviction,and,having separated both prisoners,visit each of them to offer the same deal.If one testifies(defects from the other)for the prosecution against the o
展开阅读全文