61软件无线电技术62超宽带无线技术63智能天线技术64课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《61软件无线电技术62超宽带无线技术63智能天线技术64课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 61 软件 无线电 技术 62 宽带 无线 63 智能 天线 64 课件
- 资源描述:
-
1、第6章 无线通信新技术6.1 软件无线电技术6.2 超宽带无线技术6.3 智能天线技术6.4 WiMAX技术6.5 认知无线电技术习题第第6 6章章 无线通信新技术无线通信新技术第6章 无线通信新技术6.1 软件无线电技术软件无线电技术6.1.1 软件无线电的概念软件无线电的概念基于软件的无线电(SBR,Software Based Radio)也叫做软件定义无线电(SDR,Software Defined Radio),或者叫做软件无线电(SR,Software Radio),它通常被定义为对数字化无线电信号使用软件技术来处理。软件无线电的基本含义是把以往采用以硬件为核心、以特殊应用为目的的
2、无线电实现方法,过渡到在某一个计算机平台上用软件来完成无线电任务的设计思想上来。第6章 无线通信新技术软件无线电只需要改变软件就可以变换系统的功能和所遵从的技术标准,从而使得无线系统体制具有更好的通用性、灵活性,并使系统互连和升级变得方便。软件无线电要求在尽可能靠近天线处进行信号的数字化,从而在数字域获得完全的灵活性,或者可用灵活的射频前端处理大范围的载频和调制方式。软件无线电模型如图6-1所示。第6章 无线通信新技术图 6-1 软件无线电模型第6章 无线通信新技术6.1.2 软件无线电的特点软件无线电的特点软件无线电具有完全可编程性。软件无线电可通过软件编程的方式来改变通信过程中的各项参数,
3、如RF 频段和带宽、信道接入方式、传输速率、接口类型、业务种类及加密方法等。由此可以看到,软件无线电具有很高的灵活性。第6章 无线通信新技术软件无线电具有开放式模块化结构。软件无线电的基本平台是由标准化、模块化的硬件单元以总线方式连接而成的。另外,它还是一种开放式的体系结构。它能在尽可能标准化、统一化的硬件平台上通过加载不同的软件来实现各种不同门类、不同型号通信产品的不同功能。软件无线电具有集中性。多个信道共享射频前端与宽带A/D 或D/A 转换器以获得每一信道相对廉价的信号处理功能。第6章 无线通信新技术6.1.3 软件无线电的关键技术软件无线电的关键技术软件无线电的关键技术主要包括:宽带多
4、频段天线,宽带A/D、D/A转换器,高速并行的DSP,总线结构等。第6章 无线通信新技术1.宽带多频段天线宽带多频段天线理想的软件无线电系统的天线部分应该能覆盖全部无线通信频段,能用程序控制的方法对功能及参数进行设置。软件无线电覆盖的频段为22000 MHz。就目前的水平而言,研制出一种全频段天线是不可能的,对于大多数系统只是覆盖不同频段的几个窗口,而不是覆盖全部频段。多频段天线的主导思想就是利用多个频段窗口的叠加来实现全部频段的覆盖。普遍采用的一种方案是利用230 MHz、30500 MHz、5002000 MHz这三个波段的天线进行组合。另外,还可采用智能化天线技术,模块化、通用化收发双工
5、技术,多倍频程宽带低噪音放大器等其他方案实现。第6章 无线通信新技术2.宽带宽带A/D、D/A转换器转换器数字化是软件无线电的基础,模拟信号必须经过采样转化成数字信号才能用软件进行处理,而生成的数字信号也需要变换成模拟信号才能进行射频放大输出,完成此项功能的器件就是各种A/D、D/A转换器。软件无线电对A/D和D/A转换器的要求是很高的,主要的性能要求为采样的速率和采样的精度。根据奈奎斯特采样定理,大带宽的输入信号要求A/D转换有很高的采样速率;另一方面多路信号间的远近效应要求A/D转换器具有大的动态范围与采样精度。但是这两者常常是不能同时满足的。采样速率每增加一倍,分辨力损失近1位。现实中常
6、采用多个A/D并联的方法进行处理。第6章 无线通信新技术常用的采样方法有过采样、正交采样和欠采样等。当采样频率fs为fmax(被采样信号的最高频率)的2.5倍以上时称为过采样。过采样产生的数据量较大,因此对后端数据处理的压力较大。正交采样是将信号分为两路,分别与本振的两个正交分量相乘,将射频信号变到中频或基带再采样。由于每路信号分量仅为原始信号带宽的一半,采样速率就可以降为原来的一半,因此需要两片相位一致的A/D转换器,实现起来相对困难。欠采样又叫带通采样,欠采样的采样速率可以更低,后端可直接在信号采样后较低的谐波分量上进行处理,既提高了效率,又简化了电路设计。第6章 无线通信新技术A/D转换
7、器结构主要有结构和管状结构。结构的A/D转换器的优势在于能提供较大的动态范围和高的线性度,但转换速度有限。管状A/D转换器能实现很高的转换速率,但其分辨力只能限于1314位。据有关研究显示,采用两种结构、通过不同形式的混合而形成的混合转换器,不仅能综合不同结构在分辨率和转换速率方面的优势,而且还具有纠错算法、降低功耗和适应不同环境的能力。第6章 无线通信新技术最常用的A/D转换器为半导体A/D转换器。目前,将超导和光取样技术应用于A/D转换器已成为未来的发展趋势。例如,基于超导基本量子机械特性的“快速单通量”(RSFQ)技术,利用单磁通量子脉冲代表二进制值,它可以通过对处理速度与分辨率进行折中
8、的方法来达到最佳技术性能;采用超导的A/D转换器还具有高灵敏度的特点。在光取样A/D转换器中,取样与量化功能分别是在光域和电子域中完成的。光取样A/D转换器的主要优点在于模式锁定激光源的定时抖动小。当然,与较为成熟的半导体A/D转换器相比,超导和光取样两种A/D转换器技术还在不断地探索和发展当中。第6章 无线通信新技术3.高速并行的高速并行的DSPDSP芯片是软件无线电所必须的、最基本的器件,软件对数字信号的处理都是在DSP上进行的。软件对数字信号的处理功能主要包括三部分:基带处理、比特流处理和信源编码。基带处理主要完成各种波形的调制解调、扩频解扩以及信道的自适应均衡和各种同步的数字处理,每路
9、需要几十到几百MIPS(Million Instructions Per Second)的处理能力。第6章 无线通信新技术比特流处理主要完成信道编解码(软判决译码)、复用、分解、交换、信令、控制、操作和管理以及加密、解密等功能,每路需要几十个MIPS的处理能力。信源编码要完成话音、图像等的编码算法,每信道需要十几个MIPS的处理能力。要完成如此巨大的信号处理运算量,一般可采用数字信号处理技术DSP、专用集成电路ASIC、可编程门阵列FPGA这几种技术。第6章 无线通信新技术 DSP采用基于微处理器的体系结构,支持采用高级语言进行编程,使得DSP具有最大的灵活性;ASIC在固定的硅片上实现系统电
10、路,是速度和功耗最优的电路实现,但其功能比较固定;FPGA也具有速度快、功耗低的特点,提供了底层硬件的可重构能力,其灵活性介于DSP和ASIC之间。与DSP相比,FPGA要求开发人员对硬件有一定的了解,从而受到一定的限制。目前也可将这几种技术相结合来提高数据的处理能力。第6章 无线通信新技术4.总线结构总线结构软件无线电需要进行大量的数据传输,为保证性能,要求总线具有较高的数据传输和输入/输出(I/O)能力,传输速率至少要在50 Mb/s以上,支持3264 bit独立的数据总线和地址总线;具备良好的机械特性和电磁特性,以便在恶劣的通信环境下也能正常工作,保证一定的通信性能。目前技术最成熟、通用
11、性最好且得到最广泛支持的是VME总线。VME总线支持独立32位地址和32位数据总线,支持面向多主机的并行处理,能保证多个并行的处理器协调工作,并能共享系统资源,它已被公认为是未来工控系统总线标准的基础。第6章 无线通信新技术6.1.4 软件无线电的应用软件无线电的应用1.军事领域军事领域在军事领域,软件无线电可用于实现各种军用电台互联互通的多功能无线网关,用于实现可接入各种军用移动通信网的多功能车载电台,还可用于实现各种军用无线系统空中转信的多功能空中平台,以及智能化通信侦察与对抗的通信电子对抗系统等。第6章 无线通信新技术雷达也是现代战争中相当重要的设备,不同用途、不同功能的雷达对雷达信号的
12、各项参数如载波、脉宽、调制方式等均有不同的要求。显然,如果能把软件无线电的设计思想应用于雷达的设计,那么就能利用软件的方式来修改参数,可以比较圆满地解决目前雷达设计中所存在的问题。第6章 无线通信新技术2.移动通信移动通信由于软件无线电可充分利用数字化射频信号中的大量信息来评估传输质量,分析信道特点,采用最佳接入模式灵活地分配无线资源,所以软件无线电技术的应用很快渗透到移动通信特别是第三代移动通信(主要是CDMA2000、WCDMA和TD-SCDMA)的研究中。多频段多模式移动电话通用手机、多频段多模式移动电话通用基站、无线局域网及无线用户环路的通用网关等都是软件无线电的重要应用领域。实际上,
13、软件无线电是TD-SCDMA系统的关键技术之一。第6章 无线通信新技术3.卫星通信卫星通信在当今通信领域中,卫星通信是最重要的通信方式之一。但是,目前卫星通信系统设备种类繁多,设备管理和维护工作复杂,使得卫星通信系统更新换代周期长,不能很好地适应现代高科技的发展步伐,而软件无线电以其软件定义功能和开放式模块化结构的技术思想能很好地解决卫星通信系统存在的问题,因此,研究具有软件无线电特征的卫星通信系统很有意义。第6章 无线通信新技术在卫星通信系统中,系统功能主要指多址方式网络结构、组网协议和通信业务等;设备功能指接口标准、调制解调方式、信道编码方式、信源编码方式、信息速率、复用方式等。软件无线电
14、技术的思想就是采用先进的技术手段,使得上述功能可以用软件来定义,通过友好的人机界面,人们可以在不改变硬件设备的情况下实时地改变通信系统的功能,从而使该系统能适应各种应用环境,具有很强的适用性和灵活性。第6章 无线通信新技术6.2 超宽带无线技术超宽带无线技术6.2.1 超宽带的概念超宽带的概念超宽带(UWB,Ultra-WideBand)是指系统带宽与系统中心频率之比大于20或者系统带宽大于500 MHz的通信系统。这种新颖的无线技术与传统的无线技术有着本质的不同,尤其适用于室内等密集多径场所的高速无线接入。第6章 无线通信新技术6.2.2 超宽带技术的主要特点超宽带技术的主要特点超宽带技术的
15、主要特点如下:(1)结构简单。UWB通过发送纳秒级脉冲来传输数据信号,不需要传统收发器所需的上、下变频,也不需要本地振荡器、功率放大器和混频器等,系统结构实现比较简单,设备集成更为简化。(2)隐蔽性好,保密性强。UWB通信系统发射的信号是占空比很小的窄脉冲,所需的平均功率很小,可以隐蔽在噪声或其他信号当中传输。另外,采用编码对脉冲参数进行伪随机化后,其他系统对这种脉冲信号的检测将更加困难。第6章 无线通信新技术(3)功耗低。UWB系统使用间歇的脉冲来发送数据,脉冲持续时间很短,一般UWB的发射功率小于0.56 mW,所以其系统耗电很低。(4)多径分辨能力强。UWB发射的是持续时间极短的单脉冲且
16、占空比较低,多径信号在时间上很容易分离,不容易产生符号间干扰。(5)数据传输率高。UWB以非常宽的频率范围来换取高速的数据传输,在近距离传输速率可达500 Mb/s,是实现个人通信和无线局域网的一种理想调制技术。第6章 无线通信新技术(6)穿透能力强,定位精确。超带宽无线电具有很强的穿透障碍物的能力,还可在室内和地下进行精确定位,定位精度可达厘米级。(7)抗干扰能力强。UWB采用跳时扩频信号,系统具有较宽阔的频带,根据香农公式C=B lb(1+S/N),高带宽可以降低信噪比,因此具有很强的抗干扰性。第6章 无线通信新技术6.2.3 超宽带的关键技术超宽带的关键技术1.超宽带脉冲信号超宽带脉冲信
17、号超宽带无线电中的信息载体为脉冲无线电(IR,Impulse Radio),它是一种占空比很小的窄脉冲(纳秒级宽度)。典型的脉冲波形有高斯脉冲、基于正弦波的窄脉冲、Hermite多项式脉冲等。无论哪种波形,都能够满足单个无载波窄脉冲信号的两个特点:一是激励信号的波形为具有陡峭前后沿的单个短脉冲;二是激励信号具有包括从直流到微波的很宽的频谱。目前脉冲源的产生可采用集成电路或现有半导体器件实现,也可采用光导开关的高开关速率特性实现。第6章 无线通信新技术2.超宽带信道模型超宽带信道模型信道的传播环境是影响无线通信系统性能的主要因素之一。建立准确的传输信道模型对于系统的设计是十分重要的。UWB 信道
18、不同于一般的无线多径衰落信道。传统无线多径衰落信道一般采用瑞利分布来描述单个多径分量幅度的统计特性,前提是每个多径分量可以视为多个同时到达多径分量的合成。UWB可分离的不同多径到达时间之差可短至纳秒级,在典型的室内环境下,每个多径分量包含的路径数目是有限的,而且频率选择性衰落要比一般窄带信号严重得多。第6章 无线通信新技术IEEE 802委员会关于UWB的信道模型提案主要有:Intel模型、Win-Cassioli模型、Ghassemzadeh-Greenstein模型和Pendergrass-Beeler模型。除了Intel模型外,其他模型采用的基带脉冲宽度都不能提供足够的空间或者时间分辨力
19、,因此不能准确描述UWB系统的多径衰落特征。由于UWB系统工作环境所带来的诸多挑战,目前UWB信道的建模还不够成熟;在对所提出的各种UWB信道模型的评价方面,也还缺乏准确的比较准则;现在的研究也主要集中于室内传播环境,对室外传播的信道特点的研究还远远不够。第6章 无线通信新技术3.调制方式调制方式超宽带无线通信的调制方式有两种:传统的基于脉冲无线电方式和非传统的基于频域处理方式。脉冲位置调制(PPM)是最典型的超宽带无线通信调制方式。它是一种利用脉冲位置承载数据信息的调制方式,即采用改变发射脉冲的时间间隔或发射脉冲相对于基准时间的位置来传递信息,脉冲的极性和幅度都不改变。按照采用的离散数据符号
20、状态数可以分为二进制TH-PPM(二进制跳时脉冲位置调制)和多进制TH-PPM。第6章 无线通信新技术在这种调制方式中,一个脉冲重复周期内脉冲可能出现的位置有2个或M个,脉冲位置与符号状态一一对应。多进制TH-PPM又分为正交调制和等相关调制,两者的区别在于信息符号控制脉冲时延的机理不同,等相关调制要比正交调制相对复杂。此外,还有一种PPM调制称为PC-PPM(Pseudo Chaotic-PPM)调制,它在PPM调制的基础上采用了伪混沌理论,这种方法具有很好的频谱特性,但不能满足多用户系统。第6章 无线通信新技术另一种典型的超宽带无线通信调制方式为脉冲幅度调制(PAM),它利用信息符号控制脉
21、冲幅度,PAM既可以改变脉冲幅度的极性,也可以仅改变脉冲幅度的绝对值大小。通常所讲的PAM只改变脉冲幅度的绝对值,即信息直接触发超宽带脉冲信号发生器以产生超宽带脉冲。对于数字信号“1”,驱动信号发生器产生一个较大幅度的超宽带脉冲;对于数字信号“0”,则产生一个较小幅度的超宽带脉冲,而发射脉冲的时间间隔是固定不变的。二相调制(BPM)和开关键控(OOK)是PAM的两种简化形式。BPM通过改变脉冲的正负极性来调制二元信息,所有脉冲幅度的绝对值相同;OOK则通过脉冲的有和无来传递信息。第6章 无线通信新技术除了以上两种基本的调制方式外,UWB系统中还有一些其他的调制方式,如直接序列超宽带(DS-UW
22、B,Direct Sequency-UWB)调制、混合调制、数字脉冲间隔调制(DPIM,Digital Pulse Interval Modulation)等。DS-UWB调制方式与DS-CDMA的基带信号有很多相同的地方,但它采用了占空比低的窄高斯脉冲,因此这种信号有很大的带宽;混合调制方式是将DS-UWB和PPM进行结合;DPIM在传输带宽需求和传输容量方面有较高的效率,同步也相对简单(只需要时隙同步),但它没有考虑多用户的情况。第6章 无线通信新技术基于频域处理方式的调制方式为载波干涉(CI,Carrier Interferometry),它的波形能量不是分布在连续的频域,而是分布在离散
23、的单频上。还有一种调制方式叫做多频带(Multi-band)调制,它采用具有不同频段频谱的信号进行传输。也就是说,所有发射信号的频谱是由多个频带组成的,这也是“多频带”这个名字的由来。多频带调制可以采用正交频分复用(OFDM)或时频多址(TFMA,Time Frequency Multiple Access)。第6章 无线通信新技术多频带调制的优势有:由于Multi-band调制方式的频带带宽可以根据不同的情况进行调整,因此可以提高UWB的频谱利用率;UWB的允许频带是一系列的分离频带,Multi-band调制可以使这些频带独立应用,提高了UWB系统频带利用的灵活性;Multi-band的多个
24、频带相互独立,因此可以根据不同的情况进行取舍,更有利于与现存无线系统的共存。Multi-band调制有很多优点,但它也有着系统复杂、成本高和功耗高的缺点。第6章 无线通信新技术4.天线设计天线设计天线是任何无线系统物理层的重要组成部分,UWB系统也不例外。通常天线频域分析证明任何标准的天线都是受带宽限制的,但是UWB系统的频带宽度非常宽,甚至高达几个GHz,如何在如此宽的频宽范围内兼顾不同频率的信号的特点,实现一个高性能的匹配阻抗的天线,是一个十分棘手的问题。第6章 无线通信新技术半波偶极子是通信系统中常用的天线,但是它不适合于UWB系统,因为在UWB系统中,它会产生严重的色散,导致波形严重畸
25、变。对数周期天线可以发射宽带信号,但它是窄带系统中常用的宽带天线,同样不适用于UWB系统,因为它会带来拖尾振荡。在UWB系统中,通常使用的是面天线,它的特点是能产生对称波束,可平衡UWB馈电,因此它能够保证比较好的波形。目前,UWB系统天线设计还处于研究阶段,没有形成有效的统一数学模型。第6章 无线通信新技术5.收发信机设计收发信机设计在得到相同性能的前提下,UWB收发信机的结构比传统的无线收发信机要简单。传统的无线收发信机大多采用超外差式结构,而UWB收发信机则采用零差结构,它无需本振、功放、压控振荡器、锁相环、混频器等环节,实现起来十分简单。另外,还可以采用数字信号处理芯片(DSP)和软件
展开阅读全文