书签 分享 收藏 举报 版权申诉 / 19
上传文档赚钱

类型法向量求二面角(优质课件).ppt

  • 上传人(卖家):晟晟文业
  • 文档编号:4467700
  • 上传时间:2022-12-11
  • 格式:PPT
  • 页数:19
  • 大小:480KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《法向量求二面角(优质课件).ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    向量 二面角 优质 课件
    资源描述:

    1、3.23.2立体几何中的向立体几何中的向量方法量方法法向量求二面角1A平面的法向量:平面的法向量:如果表示向量如果表示向量 的有向线段所在的有向线段所在直线垂直于平面直线垂直于平面 ,则称这个向量垂直于平,则称这个向量垂直于平面面 ,记作记作 ,如果,如果 ,那,那 么么 向向 量量 叫做叫做平面平面 的的法向量法向量.n n n n 给定一点给定一点A和一个向量和一个向量 ,那么那么过点过点A,以向量以向量 为法向量的平面是为法向量的平面是完全确定的完全确定的.n n n l法向量求二面角2平面的法向量:平面的法向量:注意:注意:1.法向量一定是非零向量法向量一定是非零向量;2.一个平面的所

    2、有法向量都一个平面的所有法向量都互相平行互相平行;n l法向量求二面角3),()1(zyxn 设出平面的法向量为),(),()2(222111cbabcbaa向量的坐标两个不共线的找出(求出)平面内的00,)3(bnanzyx方程组的关于根据法向量的定义建立个解,即得法向量。解方程组,取其中的一)4(求法向量的步骤:求法向量的步骤:法向量求二面角45法向量求二面角5 例例1、在棱长为、在棱长为2的正方体的正方体ABCD-A1B1C1D1中中,O是面是面AC的中心的中心,求面求面OA1D1的法向量的法向量.解:以解:以A为原点建立空间直角坐标系为原点建立空间直角坐标系O-xyz(如图),(如图)

    3、,则则O(1,1,0),),A1(0,0,2),),D1(0,2,2),),设平面设平面OA1D1的法向量的法向量为的法向量的法向量为n=(x,y,z),由由 =(-1,-1,2),),=(-1,1,2)得)得 1OA1OD 2020 xyzxyz 20 xzy解得解得取取z=1得平面得平面OA1D1的法向的法向量的坐标量的坐标n=(2,0,1)A A BOzyA1C1B1AxCDD1法向量求二面角6二面角的平面角二面角的平面角二面角的平面角二面角的平面角以二面角的棱上任意一点为端点,以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,在两个面内分别作垂直于棱的两条射线,这两条射

    4、线所成的角叫做二面角的平面角这两条射线所成的角叫做二面角的平面角.O复习:复习:二面角的范围:0,法向量求二面角7ll法向量法法向量法 1n 1n 2n 2n 12n n ,12n n ,12n n ,12n n ,cos12cos,n ncos12cos,n n求二面角的大小可转化为求两个平面法向量的夹角求二面角的大小可转化为求两个平面法向量的夹角.二面角的大小与法向量二面角的大小与法向量n1、n2夹角相等或互补。夹角相等或互补。法向量求二面角8四四、教学过程的设计与实施教学过程的设计与实施总结出利用法向量求二面角大小的一般步骤:总结出利用法向量求二面角大小的一般步骤:1)建立坐标系,写出点

    5、与向量的坐标;)建立坐标系,写出点与向量的坐标;2)求出平面的法向量,进行向量运算求出法)求出平面的法向量,进行向量运算求出法向量的夹角;向量的夹角;3)通过图形特征或已知要求,确定二面角是)通过图形特征或已知要求,确定二面角是锐角或钝角,得出问题的结果锐角或钝角,得出问题的结果法向量求二面角9例例2 2:如图,正方体:如图,正方体ABCD-AABCD-A1 1B B1 1C C1 1D D1 1中,中,E E,F F,M M,N N分别是分别是A A1 1B B1 1,BCBC,C C1 1D D1 1,B B1 1C C1 1的的中点,求二面角中点,求二面角M-EF-NM-EF-N的大小的

    6、大小AD1C1B1A1NMFEDCB(2)法向量求二面角10AD1C1B1A1NMFEDCBxyz解:(解:(1 1)建系如图)建系如图所示,设正方体棱长所示,设正方体棱长为为2,2,则则M M(0 0,1 1,2 2)F F(1 1,2 2,0 0)E E(2 2,1 1,2 2)N N(1 1,2 2,2 2)则则MF=MF=(1,11,1,-2-2)NF=NF=(0 0,0 0,-2-2)EF=EF=(-1-1,1 1,-2-2),),设平面设平面ENFENF的法向量的法向量为为n=(x,y,z),n=(x,y,z),EFn=0NFn=0-x+y-2z=0-2z=0则则x=yz=0令令x

    7、=y=1,则则n=(1,1,0)2法向量求二面角11AD1C1B1A1NMFEDCBxyz解:(解:(2)建系如图,)建系如图,由(由(1)得:面)得:面ENF的法向量为的法向量为 n=(1,1,0),又),又MF=(1,1,-2)EF=(-1,1,-2)设面设面EMF的法向量的法向量为为m=(x,y,z),则,则MF.m=0EFm=0 x+y-2z=0-x+y-2z=0 x=0y=2z令令z=1,则则m=(0,2,1)cos=10/5 由题意可知,所由题意可知,所求二面角为锐角,故所求二面角的求二面角为锐角,故所求二面角的大小为大小为arccos(10/5)法向量求二面角121,2SA 1.

    8、2AD AzyxDCBS图5例3 如图5,在底面是直角梯形的四棱锥SABCD中,AD/BC,ABC=900,SA面ABCD,AB=BC=1,求侧面SCD与面SBA所成的二面角的大小。法向量求二面角13解:以A为原点如图建立空间直角坐标系,AzyxDCBS图5则110,0,0,0,0,0,1,0,1,1,0,0,0,22SABCD1,2SA 111.2AD 11(0,0,),(0,1,)22SASB)21,1,1(),21,0,21(SCSD显然平面SBA的一个法向量为1(1 00)n ,2()nxyz,2SCDn 平面设平面SCD的一个法向量为则法向量求二面角14222002,(21 2)22

    9、00nSDxzzn,xyznSC 取则则1212121 22cos,1 33|nnn nnn 根据题意知,侧面SCD与面SBA所成的二面角的大小的大小为2arccos3法向量求二面角15 练习:在正方体练习:在正方体AC1中,中,E是是BB1中点,求中点,求(1)二面角)二面角A-DE-B的余弦值;的余弦值;ABCDA1B1C1D1EXYZ112A D EB CE面与 面所 成 二 面 角 的 余 弦;13ADEADE求面与面所成二面角的大小;法向量求二面角161、如图所示、如图所示,正方体正方体ABCD-A1B1C1D1棱长为棱长为1 ,试用多种方法求二面角试用多种方法求二面角A1BDC1的余弦值的余弦值四四、教学过程的设计与实施教学过程的设计与实施法向量求二面角17法向量求二面角18 已知正方形已知正方形ABCD的边长为的边长为1,PD 平面平面ABCD,且,且PD=1,E、F分别为分别为AB、BC的中点。的中点。求证:求证:PE AF;求点求点D到平面到平面PEF的距离;的距离;求直线求直线AC到平面到平面PEF的距离;的距离;求直线求直线PA与与EF的距离;的距离;求直线求直线PA与与EF所成的角;所成的角;求求PA与平面与平面PEF所成的角;所成的角;求二面角求二面角A-PE-F的大小。的大小。ABCDEFPxyz练习练习法向量求二面角19

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:法向量求二面角(优质课件).ppt
    链接地址:https://www.163wenku.com/p-4467700.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库