导数在实际生活中的应用PPT教学课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《导数在实际生活中的应用PPT教学课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 导数 实际 生活 中的 应用 PPT 教学 课件
- 资源描述:
-
1、导数在实际生活中的应用PPT教学课件1 1、实际问题中的应用、实际问题中的应用.在日常生活、生产和科研中在日常生活、生产和科研中,常常会遇到求函数的常常会遇到求函数的最大最大(小小)值的问题值的问题.建立目标函数建立目标函数,然后利用导数的方法然后利用导数的方法求最值是求解这类问题常见的解题思路求最值是求解这类问题常见的解题思路.在建立目标函数时在建立目标函数时,一定要注意确定函数的定义域一定要注意确定函数的定义域.在实际问题中在实际问题中,有时会遇到函数在区间内只有一个有时会遇到函数在区间内只有一个点使点使 的情形的情形,如果函数在这个点有极大如果函数在这个点有极大(小小)值值,那么不与端点
2、值比较那么不与端点值比较,也可以知道这就是最大也可以知道这就是最大(小小)值值.这里所说的也适用于开区间或无穷区间这里所说的也适用于开区间或无穷区间.0)(xf满足上述情况的函数我们称之为满足上述情况的函数我们称之为“单峰函数单峰函数”.3、求最大(最小)值应用题的一般方法、求最大(最小)值应用题的一般方法(1)分析实际问题中各量之间的关系,把实际问题化为分析实际问题中各量之间的关系,把实际问题化为数学问题,建立函数关系式,这是关键一步。数学问题,建立函数关系式,这是关键一步。(2)确定函数定义域,并求出极值点。确定函数定义域,并求出极值点。(3)比较各极值与定义域端点函数的大小,比较各极值与
3、定义域端点函数的大小,结合实结合实际,确定最值或最值点。际,确定最值或最值点。2、实际应用问题的表现形式,常常不是、实际应用问题的表现形式,常常不是以纯数学模式反映出来。以纯数学模式反映出来。首先,通过审题,认识问题的背景,抽象出问题的实质。首先,通过审题,认识问题的背景,抽象出问题的实质。其次,建立相应的数学模型其次,建立相应的数学模型,将应用问题转化为数学问题将应用问题转化为数学问题,再解。再解。6060解解:设箱底边长为设箱底边长为x cm,箱子容积为箱子容积为V=x2 h例例1 在边长为在边长为60cm的正方形铁皮的四角切去相等的正方形,的正方形铁皮的四角切去相等的正方形,再把它的边沿
4、虚线折起,做成一个无盖的方底箱子,箱底再把它的边沿虚线折起,做成一个无盖的方底箱子,箱底边长为多少时,箱子容积最大?最大容积是多少?边长为多少时,箱子容积最大?最大容积是多少?则箱高则箱高260 xh 26032xx xxV=60 x3x/2令令V=0,得,得x=40,x=0(舍去舍去)得得V(40)=16000答:当答:当箱底边长为箱底边长为x=40时时,箱子容积最大,箱子容积最大,最大值为最大值为16000cm3)600(x;0()40,0()时,时,当当xVx.0()60,40()时,时,当当xVx。为极大值,且为最大值为极大值,且为最大值)40(V 在实际问题中,如果函数在实际问题中,
5、如果函数 f(x)在某区间内在某区间内只有一个只有一个x0 使使f(x0)=0,而且从实际问题本身又可而且从实际问题本身又可以知道函数在以知道函数在 这点有极大这点有极大(小小)值,那么不与端点值,那么不与端点比较,比较,f(x0)就是所求的最大值或最小值就是所求的最大值或最小值.(所说区间的也适用于开区间或无穷区间所说区间的也适用于开区间或无穷区间)hR例例2.要生产一批带盖的圆柱形铁桶,要求每个铁桶的容积要生产一批带盖的圆柱形铁桶,要求每个铁桶的容积为定值为定值V,怎样设计桶的底面半径才能使材料最省?此时高,怎样设计桶的底面半径才能使材料最省?此时高与底面半径比为多少?与底面半径比为多少?
6、解解:设桶底面半径为设桶底面半径为R,2RVh 则桶高为则桶高为,2222)(222RVRRVRRRS 桶的用料为桶的用料为,24)(2RVRRS ,024)(2 RVRRS 令令2VR 解得2322 VVRVh此时,此时,224VVRh2即因为因为S(R)只有一个极值只有一个极值,所以它是最小值。所以它是最小值。答:当罐高与底的直径想等时,所用材料最省。答:当罐高与底的直径想等时,所用材料最省。例例3.已知某商品生产成本已知某商品生产成本C与产量与产量q的函数关系式为的函数关系式为C=100+4q,价格价格p与产量与产量q的函数关系式为的函数关系式为 求产量求产量q为何值为何值时时,利润利润
7、L最大。最大。.8125qp 分析分析:利润利润L等于收入等于收入R减去成本减去成本C,而收入而收入R等于产量乘价格等于产量乘价格.由此可得出由此可得出利润利润L与产量与产量q的函数关系式的函数关系式,再用导数求最大利润再用导数求最大利润.281258125qqqqpqR解:收入)2000(1002181)4100(812522 qqqqqqCRL利润利润2141qL021410 qL,即,即令令求得唯一的极值点求得唯一的极值点84q因为因为L只有一个极值点只有一个极值点,所以它是最大值所以它是最大值.答答:产量为产量为84时时,利润利润L最大最大.xy练习练习1:如图如图,在二次函数在二次函
8、数f(x)=4x-x2的图象与的图象与x轴所轴所 围成的图形中有一个内接围成的图形中有一个内接矩形矩形ABCD,求这求这 个矩形的个矩形的最大面积最大面积.解解:设设B(x,0)(0 x2),则则 A(x,4x-x2).从而从而|AB|=4x-x2,|BC|=2(2-x).故矩形故矩形ABCD的面积的面积为为:S(x)=|AB|BC|=2x3-12x2+16x(0 x2).16246)(2 xxxS令令 ,得得.3322,33220)(21 xxxS),2,0(1 x所以当所以当 时时,.9332)(3322max xSx因此当点因此当点B为为 时时,矩形的最大面积是矩形的最大面积是)0,33
9、22(.93322 2、一艘轮船在航行中的燃料费和它的速度的立方一艘轮船在航行中的燃料费和它的速度的立方成正比。已知在速度为成正比。已知在速度为10km10km/h/h时,燃料费是时,燃料费是6 6元元/h/h。而其他与速度无关的费用为而其他与速度无关的费用为9696元元/h/h。问以何种速度。问以何种速度航行时。能使行驶每公里的费用总和最少?航行时。能使行驶每公里的费用总和最少?3、如图、如图,铁路线上铁路线上AB段长段长 100km,工厂工厂C到铁路的到铁路的 距离距离CA=20km.现在要现在要 在在AB上某一处上某一处D,向向C修修 一条公路一条公路.已知铁路每吨已知铁路每吨 千米与公
展开阅读全文