二重积分的概念及性质.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《二重积分的概念及性质.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 二重积分 概念 性质
- 资源描述:
-
1、二重积分的概念及性质2 重积分是定积分的推广和发展重积分是定积分的推广和发展.分割、取近似、求和、取极限分割、取近似、求和、取极限.定积分的被积函数是一元函数定积分的被积函数是一元函数,而二重、三重积分的被积函数而二重、三重积分的被积函数重积分有其广泛的应用重积分有其广泛的应用.序序 言言其同定积分其同定积分一样也是某种确定和式的极限一样也是某种确定和式的极限,其基本思想是四其基本思想是四步曲步曲:其积分区域其积分区域是一个确定区间是一个确定区间.其积分域是一个平面有界其积分域是一个平面有界是二元、三元函数是二元、三元函数,和空间有界闭区域和空间有界闭区域.3问题的提出问题的提出二重积分的概念
2、二重积分的概念二重积分的性质二重积分的性质小结小结 思考题思考题 作业作业double integral9.1 二重积分二重积分的概念与性质的概念与性质第第9 9章章 重重 积积 分分4一、问题的提出一、问题的提出定积分中会求平行截面面积为已知的定积分中会求平行截面面积为已知的 一般立体的体积如何求一般立体的体积如何求先从先从曲顶柱体的体积曲顶柱体的体积开始开始.而而曲顶柱体的体积曲顶柱体的体积的计算问题的计算问题,一般立体的体积可分成一些比较简单的一般立体的体积可分成一些比较简单的 回想回想立体的体积、立体的体积、旋转体的体积旋转体的体积.曲顶柱体的体积曲顶柱体的体积.可作为二重积分的一个模
3、型可作为二重积分的一个模型.5),(yxfz 曲顶柱体体积曲顶柱体体积=1.曲顶柱体的体积曲顶柱体的体积D困难困难曲顶柱体曲顶柱体0),(yxf以以xOy面上的闭区域面上的闭区域D为底为底,D的边界曲线为准线而母线平行于的边界曲线为准线而母线平行于z轴的柱面轴的柱面,侧面以侧面以曲面曲面z=f(x,y),且在且在D上连续上连续).oyxz顶是曲的顶是曲的顶是顶是6柱体体积柱体体积=特点特点 分析分析曲边梯形面积是如何求曲边梯形面积是如何求以直代曲、以直代曲、如何创造条件使如何创造条件使 解决问题的思路、步骤与解决问题的思路、步骤与回忆回忆思想是思想是分割、分割、平顶平顶平平曲曲这对矛盾互相转化
4、这对矛盾互相转化与与以不变代变以不变代变.曲边梯形面积的曲边梯形面积的求法类似求法类似.取近似、取近似、求和、求和、取极限取极限.底面积底面积高高7步骤如下步骤如下用若干个用若干个D),(yxfz 先任意分割曲顶先任意分割曲顶 V曲顶柱体的体积曲顶柱体的体积:并任取并任取之和之和近似表示近似表示曲曲顶柱体的体积顶柱体的体积,iiniif ),(10lim xzyO),(ii ),(iif i 柱体的底柱体的底,小区域小区域,小平顶柱体体积小平顶柱体体积8(1)分割分割相应地此曲顶相应地此曲顶柱体分为柱体分为n个小曲顶柱体个小曲顶柱体.(2)取近似取近似iii ),(第第i个小曲顶柱体的体积的近
5、似式个小曲顶柱体的体积的近似式iV n ,21(用用 表示第表示第i个子域的面积个子域的面积).i 将域将域D任意分为任意分为n个子域个子域在每个子域内任取一点在每个子域内任取一点ni,3,2,1 iiif ),(9(3)求和求和 即得曲顶柱体体积的近似值即得曲顶柱体体积的近似值:(4)取极限取极限作作)趋于零趋于零,iiniifV ),(lim10求求n个小平顶柱体体积之和个小平顶柱体体积之和令令n个子域的直径中的最大值个子域的直径中的最大值(记记上述和式的极限即为上述和式的极限即为曲顶柱体体积曲顶柱体体积iiniif ),(1iiniif ),(1 V102.非均匀平面薄片的质量非均匀平面
6、薄片的质量(1)将薄片将薄片分割分割成成 n个个小块小块,近似看作近似看作均匀薄片均匀薄片.iM(2)M(3)M(4)任取小块任取小块 i 设有一平面薄片设有一平面薄片,),(),(yxyx 处的面密度为处的面密度为在点在点Dyx在在假定假定),(求平面薄片的质量求平面薄片的质量M.iii ),(iinii ),(1iinii ),(10lim xyOi 上连续上连续,占有占有xOy面上的闭区域面上的闭区域D,),(ii 11也表示它的面积也表示它的面积,个小区域个小区域表示第表示第其中其中ii ),(iii 上任取一点上任取一点在每个在每个 二、二重积分的概念二、二重积分的概念1.二重积分的
7、定义二重积分的定义定义定义9.1,21n 作乘积作乘积 ),2,1(ni 并作和并作和 .),(1iiniif iiif ),(设设f(x,y)是有界闭区域是有界闭区域 D上的上的有界函数有界函数,将闭区域将闭区域 D任意分成任意分成n个小闭域个小闭域(1)(2)(3)12,d),(Dyxf 这和式这和式趋近于零时趋近于零时,如果当如果当各小闭区域的直径中的最大值各小闭区域的直径中的最大值 的极限存在的极限存在,则则iiniif ),(1二重积分二重积分,记为记为即即iiniiDfyxf ),(limd),(10称此极限为函数称此极限为函数 f(x,y)在闭区域在闭区域D上的上的(4)13曲顶
8、柱体体积曲顶柱体体积,d),(DyxfV 它的面密度它的面密度.d),(DyxM 曲顶曲顶 即即在底在底D上的上的二二重积分重积分,),(yxfz 平面薄片平面薄片D的质量的质量即即0),(yx 在薄片在薄片D上的二重积分上的二重积分,14 (2)在直角坐标系下用在直角坐标系下用平行于坐标轴的直线网来平行于坐标轴的直线网来划分区域划分区域D,Dyxf d),(二重积分可写为二重积分可写为注注定积分中定积分中(1)重积分重积分与与定积分的区别定积分的区别:重积分中重积分中,0d dx可正可负可正可负.yxdd Dyxf),(则面积元素为则面积元素为yxddd Dyxf d),(Oxy152.二重
9、积分的存在定理二重积分的存在定理设设f(x,y)是有界闭区域是有界闭区域D上的连续函数上的连续函数 Dyxf d),(存在存在.连续函数一定可积连续函数一定可积注注 今后的讨论中今后的讨论中,相应的积相应的积分区域内总是连续的分区域内总是连续的.或是分片连续函数时或是分片连续函数时,则则都假定被积函数在都假定被积函数在16(2)3.二重积分的几何意义二重积分的几何意义(3)(1)的的二重积分就等于二重积分就等于二重积分是二重积分是二重积分是二重积分是而在其而在其他他的部分区域上是负的的部分区域上是负的.这些这些部分区域上的部分区域上的柱体体积的柱体体积的代数和代数和.那那么,么,f(x,y)在
10、在D上上,0),(时时当当 yxf,0),(时时当当 yxf柱体体积的负值柱体体积的负值;柱体体积柱体体积;当当f(x,y)在在D上的若干部分区域上是正的上的若干部分区域上是正的,17例例 设设D为圆域为圆域222Ryx 二重积分二重积分 DyxR d222=解解 222yxRz 上述积分等于上述积分等于 DyxR d222.323R 由由二重积分的几何意义二重积分的几何意义可知可知,是上半球面是上半球面上半球体的体积上半球体的体积:RyxzOD18性质性质9.1(线性性质线性性质)为常数为常数,则则(二重积分与定积分有类似的性质二重积分与定积分有类似的性质)三、二重积分的性质三、二重积分的性
11、质 Dyxgyxf d),(),(、设设 DDyxgyxf d),(d),(根据根据二重积分的几何意义二重积分的几何意义,确定积分值确定积分值,d)(22 Dyxb).0(ab222ayxD 为为其中其中ba2 Db d Dyx d22)31(33aa ba2.323a 19性质性质9.2(区域可加性区域可加性)将区域将区域D分为两个子域分为两个子域 Dyxf d),()(21DDD OxyD1D2D1与与D2除分界线除分界线外无公共点外无公共点.D 1d),(Dyxf.d),(2 Dyxf 将区域将区域D分为两个子域分为两个子域D1,D220以以1为高的为高的 性质性质9.3(几何应用几何应
12、用)若若 为为D的面积的面积 注注 D d既可看成是以既可看成是以D为底为底,柱体体积柱体体积,D d1 D d又可看成是又可看成是D的面积的面积.21例例 41222222dd)sin(yxyxyxyx的值的值=().(A)为正为正.(B)为负为负.(C)等于等于0.(D)不能确定不能确定.为负为负B性质性质9.4 9.4(正性正性),),(,0),(Dyxyxf 则则 Dyxf d),(0 22 Dyxf d),(推论推论2 2(绝对可积性绝对可积性)推论推论1 1(单调性单调性),),(),(),(Dyxyxgyxf 设设则则 Dyxg d),(Dyxf d),(Dyxf d),(若若f
展开阅读全文