一元回归分析课件100428精选.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《一元回归分析课件100428精选.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 一元 回归 分析 课件 100428 精选
- 资源描述:
-
1、1回归分析的基本思想及其初步应用回归分析的基本思想及其初步应用知识结构知识结构 收集数据收集数据 (随机抽样随机抽样)整理、分析数据整理、分析数据估计、推断估计、推断简单随机抽简单随机抽样样分层抽样分层抽样系统抽样系统抽样用样本估计总体用样本估计总体变量间的相关关系变量间的相关关系 用样本用样本的频率的频率分布估分布估计总体计总体分布分布 用样本用样本数字特数字特征估计征估计总体数总体数字特征字特征线性回归分析线性回归分析1、两个变量的关系、两个变量的关系不相关不相关相关相关关系关系函数关系函数关系线性相关线性相关非线性相关非线性相关问题问题1:现实生活中两个变量间的关系有哪:现实生活中两个变
2、量间的关系有哪些呢?些呢?相关关系:相关关系:对于两个变量,当自变量取值一定对于两个变量,当自变量取值一定时,因变量的取值带有一定随机性的两个变量时,因变量的取值带有一定随机性的两个变量之间的关系。之间的关系。思考:相关关系与函数关系有怎样的不同?函数关系函数关系中的两个变量间是一种中的两个变量间是一种确定性关系确定性关系相关关系相关关系是一种是一种非非确定性关系确定性关系 函数关系是一种理想的关系模型 相关关系在现实生活中大量存在,是更一般的情况问题问题2:对于线性相关的两个变量用:对于线性相关的两个变量用什么方法来刻划之间的关系呢?什么方法来刻划之间的关系呢?2、最小二乘估计、最小二乘估计
3、最小二乘估计下的线性回归方程:最小二乘估计下的线性回归方程:ybxa121()()()niiiniixxyybXx aybx 2211xnxyxnyxiniiini3、回归分析的基本步骤回归分析的基本步骤:画散点图画散点图求回归方程求回归方程预报、决策预报、决策散点图直观判断两个变量之间是否存在线性相关关系?例例1 从某大学中随机选取从某大学中随机选取8名女大学生,其身高和体重数据如表名女大学生,其身高和体重数据如表1-1所示。所示。编号12345678身高/cm165 165 157 170 175 165 155 170体重/kg4857505464614359求根据一名女大学生的身高预报
4、她的体重的回归方程,并预报一名身高为求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为172cm的女大学生的体重。的女大学生的体重。案例案例1:女大学生的身高与体重:女大学生的身高与体重解:解:1、选取身高为自变量、选取身高为自变量x,体重为因变量,体重为因变量y,作散点图:,作散点图:2、由散点图知道身高和体重有比较好的、由散点图知道身高和体重有比较好的线性相关关系,因此可以用线性回归方程线性相关关系,因此可以用线性回归方程刻画它们之间的关系。刻画它们之间的关系。3、从散点图还看到,样本点散布在某一条、从散点图还看到,样本点散布在某一条直线的附近,而不是在一条直线上,所以直线的
5、附近,而不是在一条直线上,所以不能用一次函数不能用一次函数y=bx+a描述它们关系。描述它们关系。3.3.求线性回归方程的步骤:求线性回归方程的步骤:(1)(1)计算平均数计算平均数(2)(2)计算计算 与与 的积的积,求求(3)(3)计算计算(4)(4)将上述有关结果代入公式,求将上述有关结果代入公式,求b b、a a,写出回归直线方程写出回归直线方程 ,xyixiy1niiix y21niix2211xnxyxnyxbiniiinixbya例例1 从某大学中随机选取从某大学中随机选取8名女大学生,其身高和体重数据如表名女大学生,其身高和体重数据如表1-1所示。所示。594361645450
6、5748体重/kg170155165175170157165165身高/cm87654321编号求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为172cm的女大学生的体重。的女大学生的体重。根据最小二乘法估计 和 就是未知参数a和b的最好估计,ab制表xi2xi yiyixi7 8 合计654321i2iiixyxx ynni=1i=1 ,.例例1 从某大学中随机选取从某大学中随机选取8名女大学生,其身高和体重数据如表名女大学生,其身高和体重数据如表1-1所示。所示。5943616454505748体重/kg170
7、155165175170157165165身高/cm87654321编号求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为172cm的女大学生的体重。的女大学生的体重。根据最小二乘法估计 和 就是未知参数a和b的最好估计,ab于是有b=12210.849niiiniix ynx yxnx85.712aybx 所以回归方程是0.84985.712yx(,)x y 称为样本点的中心探究:探究:身高为身高为172cm的女大学生的体重一定是的女大学生的体重一定是60.316kg吗?吗?如果不是,你能解析一下原因吗?如果不是,
8、你能解析一下原因吗?0.849 17285.71260.316()ykg探究:探究:身高为身高为172cm的女大学生的体重一定是的女大学生的体重一定是60.316kg吗?吗?如果不是,你能解析一下原因吗?如果不是,你能解析一下原因吗?答:身高为答:身高为172cm的女大学生的体重不一定是的女大学生的体重不一定是60.316kg,但一般可以认为她的体重在但一般可以认为她的体重在60.316kg左右。左右。函数模型与回归模型之间的差别函数模型与回归模型之间的差别函数模型:abxy回归模型:eabxy例例1 从某大学中随机选取从某大学中随机选取8名女大学生,其身高和体重数据如表名女大学生,其身高和体
9、重数据如表1-1所示。所示。编号12345678身高/cm165 165 157 170 175 165 155 170体重/kg4857505464614359求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为172cm的女大学生的体重。的女大学生的体重。案例案例1:女大学生的身高与体重:女大学生的身高与体重解:解:1、选取身高为自变量、选取身高为自变量x,体重为因变量,体重为因变量y,作散点图:,作散点图:2、由散点图知道身高和体重有比较好的、由散点图知道身高和体重有比较好的线性相关关系,因此可以用线性回归方程线
10、性相关关系,因此可以用线性回归方程刻画它们之间的关系。刻画它们之间的关系。3、从散点图还看到,样本点散布在某一条、从散点图还看到,样本点散布在某一条直线的附近,而不是在一条直线上,所以直线的附近,而不是在一条直线上,所以不能用一次函数不能用一次函数y=bx+a描述它们关系。描述它们关系。我们可以用下面的我们可以用下面的线性回归模型线性回归模型来表示:来表示:y=bx+a+e,其中,其中a和和b为模型的未知参数,为模型的未知参数,e称为随机误差称为随机误差。思考思考产生随机误差项产生随机误差项e的原因是什么?的原因是什么?思考思考产生随机误差项产生随机误差项e的原因是什么?的原因是什么?随机误差
11、随机误差e e的来源的来源(可以推广到一般):可以推广到一般):1、其它因素的影响:影响身高 y 的因素不只是体重 x,可能 还包括遗传基因、饮食习惯、生长环境等因素;2、用线性回归模型近似真实模型所引起的误差;3、身高 y 的观测误差。线性回归模型线性回归模型y=bx+a+e增加了随机误差项增加了随机误差项e,因变量因变量y的值由自变量的值由自变量x和随机误差项和随机误差项e共同确定,共同确定,即即自变量自变量x只能解析部分只能解析部分y的变化的变化。在统计中,我们也把自变量在统计中,我们也把自变量x称为解析变量,称为解析变量,因变量因变量y称为预报变量。称为预报变量。4、线性回归模型线性回
12、归模型yabxe随机误差随机误差e是什么?是什么?编号编号12345678身高身高/cm165165157170175165155170体重体重/kg4857505464614359残差残差e-6.3732.6272.419-4.6181.1376.627-2.8830.382是一个变量是一个变量iiieyy=5943616454505748体重/kg170155165175170157165165身高/cm87654321编号在例在例1中,残差平方和约为中,残差平方和约为128.361。因此,数据点和它在回归直线上相应位置的差异因此,数据点和它在回归直线上相应位置的差异 是随机误差的效应,是
13、随机误差的效应,称称 为为残差残差。)iiyy(iiieyy=对每名女大学生计算这个差异,然后分别将所得的值平方后加起来,用数学符号对每名女大学生计算这个差异,然后分别将所得的值平方后加起来,用数学符号21()niiiyy称为称为残差平方和残差平方和,它代表了随机误差的效应。它代表了随机误差的效应。表示为:表示为:对回归模型进行统计检验对回归模型进行统计检验离差平方和的分解离差平方和的分解(三个平方和的意义)总偏差平方和总偏差平方和(SST)反映因变量的反映因变量的 n 个观察值与其个观察值与其均值均值的总离差的总离差回归平方和回归平方和(SSR)反映自变量反映自变量 x 的变化对因变量的变化
14、对因变量 y 取值变化的影响,取值变化的影响,或者说,是由于或者说,是由于 x 与与 y 之间的线性关系引起的之间的线性关系引起的 y 的取值变化,也称为可解释的平方和的取值变化,也称为可解释的平方和残差平方和残差平方和(SSE)反映除反映除 x 以外的其他因素(以外的其他因素(随机误差随机误差e)对对 y 取值的取值的影响,也称为不可解释的平方和或剩余平方和影响,也称为不可解释的平方和或剩余平方和 假设身高和随机误差的不同不会对体重产生任何影响,那么所有人的体重将相假设身高和随机误差的不同不会对体重产生任何影响,那么所有人的体重将相同。同。在体重不受任何变量影响的假设下,设在体重不受任何变量
15、影响的假设下,设8名女大学生的体重都是她们的平均值,名女大学生的体重都是她们的平均值,即即8个人的体重都为个人的体重都为54.5kg。54.554.554.554.554.554.554.554.5体重/kg170155165175170157165165身高/cm87654321编号54.5kg在散点图中,所有的点应该落在同一条在散点图中,所有的点应该落在同一条水平直线上,但是观测到的数据并非如水平直线上,但是观测到的数据并非如此。此。这就意味着这就意味着预报变量(体重)的值预报变量(体重)的值受解析变量(身高)或随机误差的影响受解析变量(身高)或随机误差的影响。59436164545057
展开阅读全文