书签 分享 收藏 举报 版权申诉 / 15
上传文档赚钱

类型高中数学沪教版高三上册:165《二项式定理》课件.ppt

  • 上传人(卖家):晟晟文业
  • 文档编号:4460178
  • 上传时间:2022-12-11
  • 格式:PPT
  • 页数:15
  • 大小:669.50KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《高中数学沪教版高三上册:165《二项式定理》课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    二项式定理 高中数学 沪教版高三 上册 165 二项式 定理 课件 下载 _其他版本_数学_高中
    资源描述:

    1、二项式定理二项式定理 2:44情景导入情景导入1664年冬,牛顿研读沃利斯博士的年冬,牛顿研读沃利斯博士的无穷算术无穷算术 2()a b 3()a b?222baba2:44探究发现探究发现3a2a b3b03C13C33C3()a b 2ab23C 2()a b 2aab2b02C12C22C 1()a b 11Cab01C 问题问题1:1:你能将其他你能将其他()na b?问题问题2:2:你能得到你能得到(a+b)n n的展开式吗?的展开式吗?展开式写成类似的形式吗?展开式写成类似的形式吗?2:44探究发现探究发现思路:思路:an-rbr是从是从n个个(a+b)中取中取r个个b,和余下和余

    2、下n-r个个a 相乘得到的相乘得到的,有有 种情况可以得到种情况可以得到an-rbr,(nN*)()na b .01122 2nnnnnnC aC ab C ab(nN*)故每一项都是故每一项都是an-rbr的形式,的形式,这这n个个(a+b)中各任取一个字母相乘得到的,每一项都中各任取一个字母相乘得到的,每一项都是是n次的。次的。r=0,1,n;展开式中为什么会有那几种类型的项?展开式中为什么会有那几种类型的项?展开式中各项的系数是怎么来的?展开式中各项的系数是怎么来的?(a+b)n是是n个个(a+b)相乘,相乘,因此因此,该项的系数为该项的系数为展开式中的每一项都是从展开式中的每一项都是从

    3、?rnCrnCnnnrrnrnbCbaC2:44注注:(2)(2)定理中的定理中的a,ba,b仅仅是一种符号,它可以是仅仅是一种符号,它可以是任意任意的数或式子的数或式子什么的,只要是什么的,只要是两项相加的两项相加的n n次幂次幂,就,就能运用二项式定理展开。能运用二项式定理展开。(1)(1)公式左边叫作公式左边叫作二项式二项式,右边叫作,右边叫作(a+b)n的的二项展开式二项展开式;概念理解概念理解nnnrrnrnnnnnnnnnnbCbaCbaCbaCbaCaCba333222110)(nN*)r=0,1,n;2:44实战演练实战演练求二项式求二项式 的展开式的展开式。4)1(xx422

    4、44442342421440441146411)1(xxxxxCxCCxCxCxx解解:用x代替公式中的a,用1/x代替公式中的b再次强调了定理中的再次强调了定理中的a,ba,b仅仅是一种符号,它可以是仅仅是一种符号,它可以是任意任意的数或式子的数或式子,只要是,只要是两项相加的两项相加的n n次幂次幂,就能运用二项式,就能运用二项式定理展开。定理展开。2:44(a)二项式展开式的项数、次数的规律是什么?(1)项数:有n+1项(b)二项式展开式中哪一项最有代表性?二项展开式的二项展开式的通项通项:1rT,rrnrnbaCnr,2,1,0概念理解概念理解nnnrrnrnnnnnnnnnnbCba

    5、CbaCbaCbaCaCba333222110)((c)展开式中那些组合数 (r0,1,2,n)称为二项式系数。那它是不是等于展开式的系数呢?rnC(2)次数:各项的次数都为n字母字母a a按按降幂降幂排列,次数由排列,次数由n n递减到递减到0 0,字母字母b b按按升幂升幂排列,次数由排列,次数由0 0递增到递增到n n .(nN*)r=0,1,n;2:44061524266611(2)(2)()(2)()CxCxCxxx 61(2)xx 32236012164192240160 xxxxxx 333424556666661111(2)()(2)()(2)()()CxCxCxCxxxx 的

    6、展开式如下:已知二项式(6)x1x2(2 2)、展开式的第)、展开式的第3 3项系数是多少?项系数是多少?(3 3)、展开式的第)、展开式的第3 3项二项式系数是多少?项二项式系数是多少?(1 1)、展开式的第)、展开式的第3 3项是多少?项是多少?2:44061524266611(2)(2)()(2)()CxCxCxxx 解解:61(2)xx 32236012164192240160 xxxxxx 333424556666661111(2)()(2)()(2)()()CxCxCxCxxxx 实战演练实战演练思考:你能否不求展开式直接求展开式的第3项系数?2:44实战演练实战演练解解:xxxC

    7、TT240122426123所以,第三项为240 x;第三项二项式系数为15;第三项系数为240。显然二项式系数和系数是两个不同的概念,二项式系数就是一个组合数,与a、b无关;系数,与a、b有关。(利用通项公式来求解)2:44实战演练实战演练解解:(4 4)、)、求展开式的常数项。求展开式的常数项。rrrrxxCT)1()2(6613,026rr根据题意,1602336134CTT则常数项为rrrrxC2666)()1(26)x1x2已知二项式(二项展开式的通项公式,其中含有二项展开式的通项公式,其中含有a a,b b,n n,r r,T T 五个五个量,显然,知道其中的几个或他们的某些关系,

    8、可以求另量,显然,知道其中的几个或他们的某些关系,可以求另外的几个如求特定项、特定项系数等。外的几个如求特定项、特定项系数等。2:44实战演练实战演练例例3、已知、已知 的二项展开式中,前三的二项展开式中,前三项系数成等差数列项系数成等差数列,nxx4121(1 1)求)求n n;(2)求二项式展开式所有有理项的二项式)求二项式展开式所有有理项的二项式系数和;系数和;2:44实战演练实战演练解解:(1)(1)1T2T3TnnxCT)(0014111121xxCTnn24221221xxCTnn前三项的系数分别为2141,21,1nnCC成等差数列。21411nnCC0892nn)(1,8舍nn2:44实战演练实战演练解解:rrrrrrrxCxxCT43484881)21(21)(Zr43480 r8,4,0rr一定是4的倍数,根据题意,所以有理项为T1,T5,T9,所以有理项的二项式系数和72884808CCC2:44感悟感悟 分享分享

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:高中数学沪教版高三上册:165《二项式定理》课件.ppt
    链接地址:https://www.163wenku.com/p-4460178.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库