《第4课时等边三角形的判定及含30°角的直角三角形的性质》课件(同课异构)2022年课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《《第4课时等边三角形的判定及含30°角的直角三角形的性质》课件(同课异构)2022年课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第4课时等边三角形的判定及含30°角的直角三角形的性质 课时 等边三角形 判定 30 直角三角形 性质 课件 课异构 2022
- 资源描述:
-
1、教育部教育部“精英杯公开课大赛简介精英杯公开课大赛简介 2021年6月,由教育学会牵头,教材编审委员会具体组织实施,在全国8个城市,设置了12个分会场,范围从“小学至高中全系列部编新教材进行了统一的培训和指导。每次指導,都輔以精彩的優秀示範課。在這些示範課中,不乏全國名師和各省名師中的佼佼者。他们的课程,无论是在内容和形式上,都是经过认真研判,把各学科的核心素养作为教学主线。既涵盖城市中小学、又包括乡村大局部学校的教学模式。適合全國大局部教學大區。本課件就是從全國一等獎作品中,优选出的具有代表性的作品。示范性强,有很大的推广价值。等腰三角形第一章 三角形的证明导入新课讲授新课当堂练习课堂小结
2、八年级数学下BS 教学课件 第4课时 等边三角形的判定及含30角的直角三角形的性质 学习目标1.能用所学的知识证明等边三角形的判定定理.(重点)2.掌握含30角的直角三角形的性质并解决有关问题.(难点)导入新课导入新课观察与思考观察下面图片,说说它们都是由什么图形组成的?思考:上节课我们学习了等腰三角形的判定定理,那等边三角形的判定定理是什么呢?一个三角形满足什么条件就是等边三角形?由等腰三角形的判定定理,可得等边三角形的两个判定定理:1.三个角都相等的三角形是等边三角形;2.有一个角等于60的等腰三角形是等边三角形.你能证明这些定理吗?等边三角形的判定一讲授新课讲授新课ABC:如图,A=B=
3、C.求证:AB=AC=BC.A=B,AC=BC.B=C,AB=AC.AB=AC=BC.证明:定理2:有一个角是60的等腰三角形是等边三角形.ABC:假设AB=AC ,A=60.求证:AB=AC=BC.证明:AB=AC ,A=60.BC (180。A)=60.A=B=C.AB=AC=BC.证明完整吗?是不是还有另一种情形呢?12证明:AB=AC,B=60(),C=B=60(等边对等角),A=60(三角形内角和定理)A=B=C=60 ABC是等边三角形(三个角都相等的三角形是等边三角形).:如图,在ABC中,AB=AC,B=60求证:ABC是等边三角形第二种情况:有一个底角是60.ACB60【验证
4、】等腰三角形(含等边三角形)性质判定的条件等边对等角等角对等边“三线合一,即等腰三角形顶角平分线,底边上的中线、高线互相重合有一角是60的等腰三角形是等边三角形等边三角形三个内角都相等,且每个角都是60三个角都相等的三角形是等边三角形归纳总结例1 如图,在等边三角形ABC中,DEBC,求证:ADE是等边三角形.ACBDE证明:ABC是等边三角形,A=B=C.DE/BC,ADE=B,AED=C.A=ADE=AED.ADE是等边三角形.想一想:此题还有其他证法吗?典例精析变式:上题中,假设将条件DEBC改为AD=AE,ADE还是等边三角形吗?试说明理由.ACBDE 如图,在等边三角形ABC中,AD
5、=AE,求证:ADE是等边三角形.证明:ABC是等边三角形,A=B=C=60.AD=AE,ADE是等腰三角形是等腰三角形 ADE是等边三角形.又 A=60.含30角的直角三角形的性质二操作:用两个含有30角的三角板,你能拼成一个怎样的三角形?30303030你能说出所拼成的三角形的形状吗?猜测:在直角三角形中,30角所对的直角边与斜边有怎样的大小关系?30303030303030303030合作探究结论结论:在直角三角形中在直角三角形中,30,30角所对的直角边等于斜边的角所对的直角边等于斜边的一半一半.:如图,在ABC中,ACB=90,A=30.求证:BC=AB.12A30BC分析:突破如何
6、证明“线段的倍、分问题转 化“线段相等问题猜测验证30 30 ACB=90,()ACD=90,(平角意义)在ABC与ADC中,BC=DC,作图ACB=ACD,已证 AC=AC,公共边 ABC ADCSAS,AD=AB;ACB=90,BAC=30,()B=60,ABD是等边三角形,(有一个角是60的等腰三角形是等边三角形)BC=BD=AB(等式性质)30ABCD证明:延长BC至D,使CD=BC,连接AD,2121BC:AC:AB=定理:在直角三角形中,如果有一个锐角等于30,那么它所对的直角边等于斜边的一半几何语言:在ABC中,ACB=90,A=30BC=AB(在直角三角形中,30角所对的直角边
7、等于斜边的一半)12ABC30推论:1 32:归纳总结CBAD例2 如图,在ABC中,AB=AC=2a,B=ACB=15,CD是腰AB上的高,求CD的长.解:B=ACB=15,()DAC=B+ACB=15+15=30,ADC=90,CD=AC=a在直角三角形中,如果有一个锐角等于30,那么它所对的直角边等于斜边的一半12例3:如图,在ABC中,ACB=90,A=30,CDAB于D求证:BD=DACB30证明:A=30,CDAB,ACB=90BC=B=60BCD=30,BD=BD=AB4AB2,CB2,AB.4 1.ABC中,A=B=60,AB=3cm,那么ABC的周长为_cm.9当堂练习当堂练
8、习2.在ABC中,B90,C30,AB3那么AC=_;BC=_ABC33063 33.:如图,AB=BC,CDE=120,DFBA,且DF平分CDE.求证:ABC是等边三角形.证明:AB=BC,ABC是等边三角形.又CDE=120,DF平分CDE.FDC=ABC=60,ABC是等腰三角形,EDF=FDC=60,又DFBA,证明:延长BC至D,使CD=BC,连接AD.ACB=90,ACD=90又AC=ACACBACD(SAS)AB=ADCD=BC,BC=BD又BC=AB,AB=BDAB=AD=BD,即ABD是等边三角形B=60在RtABC中,BAC=304:在RtABC中,C=90,BC=AB求
9、证:BAC=30CBAD121212课堂小结课堂小结1.等边三角形的判定:有一个角是60的等腰三角形是等边三角形三个角都相等的三角形是等边三角形2.特殊的直角三角形的性质:在直角三角形中,如果有一个锐角等于30,那么它所对的直角边等于斜边的一半在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的锐角等于303.数学方法:分类的思想 角平分线第一章 三角形的证明导入新课讲授新课当堂练习课堂小结 八年级数学下BS 教学课件 第第1 1课时课时 角平分线角平分线 1.会表达角平分线的性质及判定;重点2.能利用三角形全等,证明角平分线的性质定理,理解和掌握角平分线性质定理和它的逆定理,能
展开阅读全文