《根轨迹系统》课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《《根轨迹系统》课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 根轨迹系统 轨迹 系统 课件
- 资源描述:
-
1、根轨迹系统PPT课件第一节第一节 根轨迹法的基本概念根轨迹法的基本概念第二节第二节 根轨迹绘制的基本法则根轨迹绘制的基本法则 第四节第四节 控制系统的根轨迹法分析控制系统的根轨迹法分析第五节第五节 仿仿 真真 实实 现现本本 章章 研研 究究 内内 容容第四章第四章 根轨迹法根轨迹法返回返回第六节第六节 本章小节本章小节第三节第三节 广义根轨迹广义根轨迹 4.1 4.1 根轨迹法的基本概念根轨迹法的基本概念根轨迹概念根轨迹概念根轨迹方程根轨迹方程4.1.1 4.1.1 根轨迹概念根轨迹概念 系统开环传递函数中某一参数从零变到无穷大系统开环传递函数中某一参数从零变到无穷大时,闭环系统特征方程的根
2、在时,闭环系统特征方程的根在 s s 平面上变化的轨迹。平面上变化的轨迹。稳态性能和暂态性能稳态性能和暂态性能闭环特征根闭环特征根(极点极点)的位置的位置 稳定性稳定性闭环系统的零点、极点的位置闭环系统的零点、极点的位置 输入信号输入信号根轨迹法:根轨迹法:利用根轨迹分析系统性能的方法。利用根轨迹分析系统性能的方法。(图解法)(图解法)4.1 4.1 根轨迹法的基本概念根轨迹法的基本概念已知已知:一单位反馈二阶系统的开环传递函数为:一单位反馈二阶系统的开环传递函数为:)2(2)15.0()(ssKssKsGk闭环传递函数为:闭环传递函数为:KssKs222)(2闭环系统特征方程为:闭环系统特征
3、方程为:0222KssK211s1闭环系统特征根闭环系统特征根(即闭环极点即闭环极点)为:为:K211s2,)1s5.0(sK研究开环放大系数研究开环放大系数K K与闭环特征根与闭环特征根s s1 1、s s2 2之间的关系:之间的关系:R(s)R(s)C(s)C(s)K s1 s20 0 -20.5 -1 -11 -1+j1 -1-j12 -1+j -1-j 3j13j1 K=1K=1K=1K=1K=2K=2K=2K=2K=0K=0K=0K=0K=0.5K=0.5-1-1 j j-2-20 03j3j开环放大系数开环放大系数K K改变改变改变特征根位置改变特征根位置改变系统性能改变系统性能j
4、1j1-j1-j1 闭环系统特征方程为:闭环系统特征方程为:反映了系统开环传递函数与闭环特征方程之间的关系反映了系统开环传递函数与闭环特征方程之间的关系4.1.2 4.1.2 根轨迹方程根轨迹方程()()()KG s H sGs系统开环传递函数系统开环传递函数 系统闭环传递函数系统闭环传递函数 K1()0Gs)(1)()(sGsGsK*11K11(1)()()(1)()mmiiiinnjjjjsszGsKKT ssp设系统开环传递函数的一般形式为设系统开环传递函数的一般形式为:*11miinjjzKKpK系统开环增益系统开环增益 K*根轨迹增益或根轨迹放大倍数根轨迹增益或根轨迹放大倍数-z-z
5、i i,i=1,2m,i=1,2m开环传递函数的零点开环传递函数的零点-p-pj j,j=1,2n,j=1,2n开环传递函数的极点开环传递函数的极点*11()1()miinjjszKsp 特征方程为特征方程为:根轨迹方程根轨迹方程 绘制根轨迹时,实质上就是当某一参数绘制根轨迹时,实质上就是当某一参数(K(K*)变化时,寻求闭环特征方程式解的变化轨迹。变化时,寻求闭环特征方程式解的变化轨迹。1*1()1()miinjjszssKsp开环有限零点到根轨迹上点 的矢量长度之积开环极点到根轨迹上点 的矢量长度之积1111()()180(12)mnmnijijijijszspk 幅角条件:幅角条件:i
6、i开环有限零点到根轨迹上点开环有限零点到根轨迹上点s s的矢量幅角的矢量幅角 j j开环极点到根轨迹上点开环极点到根轨迹上点s s的矢量幅角,幅角按逆时针方向为正的矢量幅角,幅角按逆时针方向为正满足幅值条件和幅角条件的满足幅值条件和幅角条件的 s s 值,就是闭环特值,就是闭环特征方程的根,这些根所描述的曲线就是根轨迹征方程的根,这些根所描述的曲线就是根轨迹幅值条件:幅值条件:根轨迹上任一点满足根轨迹上任一点满足幅值条件幅值条件 幅角条件幅角条件 绘制根轨迹的基本法则绘制根轨迹的基本法则本本章章返返回回4.2 4.2 根轨迹绘制的基本法则根轨迹绘制的基本法则根轨迹绘制举例根轨迹绘制举例 4.2
7、.1 4.2.1 绘制根轨迹的基本法则绘制根轨迹的基本法则 绘制根轨迹应确定以下几个方面的内容:绘制根轨迹应确定以下几个方面的内容:起点、终点、根轨迹数和对称性、起点、终点、根轨迹数和对称性、实轴上的根轨迹、分离点和汇合定、实轴上的根轨迹、分离点和汇合定、根轨迹的渐近线、根轨迹的出射角和入射角、根轨迹的渐近线、根轨迹的出射角和入射角、根轨迹和虚轴的交点、根轨迹的走向。根轨迹和虚轴的交点、根轨迹的走向。(9(9项项)本本节节返返回回本本章章返返回回当当 K K*=0=0 时,有时,有0)(1njjps1)()(11*njjmiipszsK0)()(1*1miinjjzsKps1 1、起点(、起点
8、(K K*=0=0)2 2、终点(、终点(K K*=)0)()(111*miinjjzspsK1)()(11*njjmiipszsK当当 K K*=时,有时,有 0)(1miizs根轨迹起始于开环极点根轨迹起始于开环极点根轨迹终止于开环零点根轨迹终止于开环零点(有限零点)(有限零点)3 3、根轨迹数和它的对称性、根轨迹数和它的对称性4 4、实轴上的根轨迹、实轴上的根轨迹设设 N Nz z实轴上根轨迹右侧开环有限零点的数目实轴上根轨迹右侧开环有限零点的数目 N Np p实轴上根轨迹右侧开环极点的数目。实轴上根轨迹右侧开环极点的数目。在实轴上根轨迹分支存在的区间在实轴上根轨迹分支存在的区间的的右侧
9、,开环零、极点数目的总和为奇数右侧,开环零、极点数目的总和为奇数根轨迹数为开环极点数根轨迹数为开环极点数n n;根轨迹都对称于实轴;根轨迹都对称于实轴本本节节返返回回本本章章返返回回实轴上根轨迹存在的条件:实轴上根轨迹存在的条件:N Nz z+N+Np p=1+2=1+2k kk=0,1,2k=0,1,2 A B CN Nz z+N+Np p=3=3N Nz z+N+Np p=5=5N Nz z+N+Np p=1=1本本节节返返回回本本章章返返回回5 5、分离点和会合点、分离点和会合点 分离点分离点会合点会合点 b b a a s s2 2 -z -z1 1 -p -p1 1 s s1 1 -
10、p-p2 2 确定分离点和会合点的位置:确定分离点和会合点的位置:当当K K*=K=Kd d*分离点和会合点分离点和会合点 闭环特征闭环特征方程式的重根。方程式的重根。本本节节返返回回本本章章返返回回本本节节返返回回本本章章返返回回设系统的开环传递函数为:设系统的开环传递函数为:0)s(D)s(N)s(N)s(D)()()()()(*11*sDsNKpszsKsGnjjmiik计算分离点、会合点的位置:计算分离点、会合点的位置:注意:注意:1 1、分离点、会合点一定在实轴上、分离点、会合点一定在实轴上 2 2、求得的、求得的K Kd d*值必须大于零值必须大于零求分离点和会合点求分离点和会合点
11、(重根重根)s=-)s=-d d方法方法 本本节节返返回回本本章章返返回回6 6、根轨迹的渐近线根轨迹的渐近线渐近线的倾角渐近线的倾角 渐近线的交点渐近线的交点渐近线包括渐近线包括 两方面内容两方面内容1)()(11*njjdmiiddpszsK求得的求得的K Kd d*00有独立的有独立的(n-m)(n-m)条条 渐近线的倾角渐近线的倾角 设在无穷远处有特征根设在无穷远处有特征根s si i ,则,则s s平面上平面上所有开所有开环有限零点环有限零点-z-zi i和极点和极点-p-pj j到到s si i的矢量辐角都相等,的矢量辐角都相等,即:即:i i=j j=代入幅角条件,得:代入幅角条
12、件,得:)21(18011knmnjjmii渐近线的倾角为:渐近线的倾角为:mnk)21(1800 k=0,1,2,k=0,1,2,本本节节返返回回本本章章返返回回 渐近线的交点渐近线的交点 设无限远处有特征根设无限远处有特征根s si i ,则,则s s平面上所平面上所有开环有开环有限零点有限零点-z-zi i和极点和极点-p-pj j到到 s si i的矢量长度都相等。的矢量长度都相等。可可认为对于认为对于s si i来说,所有开环零点和极点都汇集在来说,所有开环零点和极点都汇集在一起,设位置为一起,设位置为-,此即为渐近线交点。此即为渐近线交点。求此交点坐标求此交点坐标-:本本节节返返回
13、回本本章章返返回回渐近线交点为:渐近线交点为:mnzpnjmiij11渐近线的交点在实轴上渐近线的交点在实轴上1)()(11*njjmiipszsK试试 计算渐近线倾角和交点,即确定渐近线的位置。计算渐近线倾角和交点,即确定渐近线的位置。解:由开环传递函数可知:解:由开环传递函数可知:m=0m=0,n=3n=3,故有,故有3 3条渐近线。条渐近线。)4)(1()(*sssKsGk180,60,6003)21(180k渐近线交点为:渐近线交点为:180180 6060-60-60 j j mnzpnjmiij11渐近线渐近线-=-5/3=-5/3 35030410渐近线渐近线渐近线渐近线例例 设
14、开环传递函数为:设开环传递函数为:本本节节返返回回渐近线倾角为:渐近线倾角为:本本章章返返回回7 7、根轨迹的出射角和入射角、根轨迹的出射角和入射角 111180njmiijcnjmiijr111180入射角:入射角:i i 除被测终点外,所有开环有限零点到该点的矢量辐角除被测终点外,所有开环有限零点到该点的矢量辐角 j j 开环极点到被测终点的矢量辐角。开环极点到被测终点的矢量辐角。i i 开环有限零点到被测起点的矢量辐角;开环有限零点到被测起点的矢量辐角;j j 除被测起点外,所有开环极点到该点的矢量辐角除被测起点外,所有开环极点到该点的矢量辐角出射角:出射角:复数极点复数极点根轨迹的出射
15、角根轨迹的出射角复数零点复数零点根轨迹的入射角根轨迹的入射角本本节节返返回回本本章章返返回回 p p4 4=-1+j1=-1+j1p p3 3=-1-j1=-1-j1 1 1 2 2 3 3 c c 1 114111180jiijc45)906.26135(1806.26求极点求极点 p p4 4 处的出射角:处的出射角:本本节节返返回回【例例 4-14-1】已知开环传递函数为:已知开环传递函数为:试试 确定根轨迹的出射角。确定根轨迹的出射角。解:该系统的开环零点和开环极点分别为:解:该系统的开环零点和开环极点分别为:-z=-2z=-2,-p-p 1 1=0=0,-p-p 2 2=-3=-3,
16、-p-p3,43,4=-=-1 1 j j对于极点对于极点 p p3 3 和和 p p4 4有出射角。有出射角。)22)(3()2()(2*sssssKsGk本本章章返返回回-p p2 2=-3 -z=-2 -=-3 -z=-2 -p p1 1=0 =0 p p3 3处的出射角为:处的出射角为:14111180jiijc6.2645)906.26135(1808 8、根轨迹和虚轴的交点、根轨迹和虚轴的交点应确定根轨迹与虚轴交点的坐标值和临界放大系数应确定根轨迹与虚轴交点的坐标值和临界放大系数K Kp p*值。值。例例 4-2 4-2 已知系统开环传递函数为:已知系统开环传递函数为:试确定根轨迹
17、与虚轴的交点,并计算临界放大系数试确定根轨迹与虚轴的交点,并计算临界放大系数 。)2)(1()(*sssKsGk本本节节返返回回本本章章返返回回*pK2解得:解得:=0=0,2js本本节节返返回回本本章章返返回回*pKK 32*p(j)3(j)2(j)0K*2p33020K*p6K 0)2(332*jKp 解:解:系统特征方程为:系统特征方程为:1+G1+Gk k(s)=0 (s)=0 s s3 3+3s+3s2 2+2s+K+2s+K*=0 =0 方法一:当根轨迹与虚轴相交时方法一:当根轨迹与虚轴相交时 ,令,令 s=js=j,代入上式代入上式,得:得:即:即:根轨迹与虚轴的交点坐标为:根轨
18、迹与虚轴的交点坐标为:临界放大系数为:临界放大系数为:方法二:方法二:利用劳斯判据计算交点和临界放大系数利用劳斯判据计算交点和临界放大系数 令令 s s1 1 行为零,即行为零,即 (6(6-K K*)/3=0)/3=0,得:,得:=6=6 根轨迹与虚轴的交点:根轨迹与虚轴的交点:由由 s s2 2 行的辅助方程求得,即令行的辅助方程求得,即令 3 3s s2 2+K K*=0=0,得:,得:2js本本节节返返回回由特征方程:由特征方程:F(s)=sF(s)=s3 3+3s+3s2 2+2s+K+2s+K*=0=0 劳斯行列表:劳斯行列表:s s3 3 1 1 2 2 s s2 2 3 3 K
19、 K*s s1 1 (6-6-K K*)/3 )/3 0 0 s s0 0 K K*本本章章返返回回*pKK 9 9、闭环极点的性质、闭环极点的性质 1 1)若特征方程的阶次)若特征方程的阶次 n-m2n-m2,则,则 一些根轨迹右行时一些根轨迹右行时 另一些根轨迹必左行另一些根轨迹必左行 j j 2j2j 本本节节返返回回-2-2-1-10 0本本章章返返回回6*pK6*pK 特征方程:特征方程:01)(1)()(*sGsDsNKk改写为:改写为:常数,各特征根之和常数,各特征根之和0)(111nnnnjjasasssnjjsa11本本节节返返回回本本章章返返回回njjnsa1 常数,各特征
20、根之积常数,各特征根之积2 2)闭环特征根与系数关系)闭环特征根与系数关系绘制根轨迹的法则:绘制根轨迹的法则:1 1、起点、起点(K K*=0=0)开环传递函数开环传递函数G Gk k(s)(s)的极点即为根轨迹的起点。的极点即为根轨迹的起点。2 2、终点、终点(K K*=)开环传递函数开环传递函数G Gk k(s)(s)的零点的零点(包括无限零点包括无限零点)即为根即为根轨迹的终点。轨迹的终点。3 3、根轨迹数目及对称性、根轨迹数目及对称性 根轨迹数目与开环极点数根轨迹数目与开环极点数n n相同,根轨迹对称于实轴相同,根轨迹对称于实轴4 4、实轴上的根轨迹、实轴上的根轨迹 实轴上根轨迹右侧的
21、零、极点数目之和应为奇数实轴上根轨迹右侧的零、极点数目之和应为奇数本本节节返返回回本本章章返返回回0)s(D)s(N)s(N)s(Dmnk)21(180渐近线的交点:渐近线的交点:mnzpnjmiij116 6、根轨迹的渐近线、根轨迹的渐近线(有有n-mn-m条渐近线条渐近线)0)()()(*sNKsDsF渐近线的倾角:渐近线的倾角:本本节节返返回回本本章章返返回回5 5、分离点与会合点、分离点与会合点注意:注意:求出求出s=-s=-d d后,应把它代入后,应把它代入 计算计算K K*,只有,只有K Kd d*为正值,为正值,s=-s=-d d才是分离点或会合点。才是分离点或会合点。7 7、根
展开阅读全文