《条件概率》课件2.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《《条件概率》课件2.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 条件概率 条件 概率 课件
- 资源描述:
-
1、8.2.2条件概率条件概率1高二数学高二数学 选修选修2-3我们知道求事件的概率有加法公式:我们知道求事件的概率有加法公式:注注:1.事件事件A与与B至少有一个发生的事件叫做至少有一个发生的事件叫做A与与B的的 和事件和事件,记为记为 (或或 );AB AB 3.若若 为不可能事件为不可能事件,则说则说事件事件A与与B互斥互斥.AB复习引入:复习引入:()()()P ABP AP B 若事件若事件A与与B互斥,则互斥,则.那么怎么求那么怎么求A与与B的积事件的积事件AB呢呢?2.事件事件A与与B都发生的事件叫做都发生的事件叫做A与与B的的积事件积事件,记为记为 (或或 );ABAB 探究:探究
2、:三张奖券中只有一张能中奖,现分别由三名同学三张奖券中只有一张能中奖,现分别由三名同学无放回的抽取,问最后一名同学抽到中奖奖券的概率无放回的抽取,问最后一名同学抽到中奖奖券的概率是否比前两名同学小。是否比前两名同学小。思考思考1 如果已经知道第一名同学没有抽到中奖奖券,那如果已经知道第一名同学没有抽到中奖奖券,那么最后一名同学抽到中奖奖券的概率又是多少?么最后一名同学抽到中奖奖券的概率又是多少?已知第一名同学的抽奖结果为什么会影响最已知第一名同学的抽奖结果为什么会影响最后一名同学抽到中奖奖券的概率呢?后一名同学抽到中奖奖券的概率呢?一般地,在已知另一事件一般地,在已知另一事件A A发生的前提下
3、,事件发生的前提下,事件B B发发生的可能性大小不一定再是生的可能性大小不一定再是P(B).P(B).即即 (|)()P B AP B条件的附加意味着对样本空间进行压缩条件的附加意味着对样本空间进行压缩.BAP(B|A)相当于把看作新的相当于把看作新的基本事件空间求基本事件空间求发生的发生的概率概率()()()()(|)()()()()n ABn ABP ABnP B An An AP An思考思考2 对于上面的事件对于上面的事件A和事件和事件B,P(B|A)与它们的概与它们的概率有什么关系呢?率有什么关系呢?1.条件概率条件概率 对任意事件对任意事件A和事件和事件B,在已知事件,在已知事件A
4、发生的发生的条件下事件条件下事件B发生的条件概率发生的条件概率”,叫做,叫做条件概率条件概率。记作记作P(B|A).基本概念基本概念2.条件概率计算公式条件概率计算公式:)A(P)AB(P)B|A(P 注注:0(|)P B A1;几何解释几何解释:可加性:可加性:如果如果BC和和互斥互斥,那么那么 ()|(|)(|)PBCAP B AP C A BA引例引例:掷红、蓝两颗骰子。掷红、蓝两颗骰子。设事件设事件A=“蓝色骰子的点数为蓝色骰子的点数为3或或6”事件事件B=“两颗骰子点数之和大于两颗骰子点数之和大于8”求求(1)P(A),P(B),P(AB)(2)在在“事件事件A已发生已发生”的附加条
5、件下事件发的附加条件下事件发生生 的概率?的概率?(3)比较比较(2)中结果与中结果与P(B)的大小及三者概率之的大小及三者概率之间关系间关系.)AB(P)AB(P,AB)AB(P,AB)AB(P,.B,)AB(P,AB,)AB(PAA大大比比一一般般来来说说中中样样本本点点数数中中样样本本点点数数中中样样本本点点数数中中样样本本点点数数则则用用古古典典概概率率公公式式发发生生的的概概率率计计算算中中表表示示在在缩缩小小的的样样本本空空间间而而的的概概率率发发生生计计算算中中表表示示在在样样本本空空间间 3.概率概率 P(B|A)与与P(AB)的区别与联系的区别与联系基本概念基本概念小试牛刀:
6、小试牛刀:例例1在在6道题中有道题中有4道理科题和道理科题和2道文科题,如果不放回道文科题,如果不放回的依次抽取的依次抽取2道题道题(1)第一次抽到理科题的概率)第一次抽到理科题的概率(2)第一次与第二次都抽到理科题的概率)第一次与第二次都抽到理科题的概率(3)第一次抽到理科题的条件下,第二次抽到理科)第一次抽到理科题的条件下,第二次抽到理科题的概率题的概率.练习练习 抛掷两颗均匀的抛掷两颗均匀的骰骰子,已知第一颗子,已知第一颗骰骰子掷子掷 出出6点,问:掷出点数之和大于等于点,问:掷出点数之和大于等于10的概率。的概率。变式变式:抛掷两颗均匀的骰子,已知点数不同,求至少:抛掷两颗均匀的骰子,
7、已知点数不同,求至少有一个是有一个是6点的概率?点的概率?例例 2 考虑恰有两个小孩的家庭考虑恰有两个小孩的家庭.(1)若已知某一家)若已知某一家有一个女孩,求这家另一个是男孩的概率;(有一个女孩,求这家另一个是男孩的概率;(2)若)若已知某家第一个是男孩,求这家有两个男孩(相当于已知某家第一个是男孩,求这家有两个男孩(相当于第二个也是男孩)的概率第二个也是男孩)的概率.(假定生男生女为等可能)(假定生男生女为等可能)例例 3 设设P(A|B)=P(B|A)=,P(A)=,求求P(B).1213例例4 盒中有球如表盒中有球如表.任取一球任取一球 玻璃玻璃 木质木质总计总计 红红 蓝蓝 2 3
8、4 7 5 11 总计总计 6 10 16若已知取得是蓝球若已知取得是蓝球,问该球是玻璃球的概率问该球是玻璃球的概率.变式变式:若已知取得是玻璃球若已知取得是玻璃球,求取得是篮球的概率求取得是篮球的概率.1.某种动物出生之后活到某种动物出生之后活到20岁的概率为岁的概率为0.7,活到活到25岁的概率为岁的概率为0.56,求现年为,求现年为20岁的这种岁的这种动物活到动物活到25岁的概率。岁的概率。解解 设设A表示表示“活到活到20岁岁”(即即20),B表示表示“活到活到25岁岁”(即即25)则则 ()0.7,()0.56P AP B所求概率为所求概率为 ()()()0.8()()P ABP B
9、P B AP AP AAB0.560.560.70.75 5BAABB由于故,n 2.2.抛掷一颗骰子抛掷一颗骰子,观察出现的点数观察出现的点数B=B=出现的点数是奇数出现的点数是奇数,A=A=出现的点数不超过出现的点数不超过33,若已知出现的点数不超过若已知出现的点数不超过3 3,求出现的点数是奇数,求出现的点数是奇数的概率的概率 解:即事件解:即事件 A A 已发生,求事件已发生,求事件 B B 的概率的概率也就是求:(也就是求:(B BA A)A A B B 都发生,但样本空都发生,但样本空间缩小到只包含间缩小到只包含A A的样本点的样本点()2(|)()3n ABP B An AB5
展开阅读全文