书签 分享 收藏 举报 版权申诉 / 38
上传文档赚钱

类型《多边形的内角和与外角和》课件-03.ppt

  • 上传人(卖家):晟晟文业
  • 文档编号:4458142
  • 上传时间:2022-12-10
  • 格式:PPT
  • 页数:38
  • 大小:632.88KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《《多边形的内角和与外角和》课件-03.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    多边形的内角和与外角和 多边形 内角 外角 课件 03
    资源描述:

    1、多边形的内角和与外角和课件-03目录 1.多边形的多边形的定义定义 2.正多边形的正多边形的定义定义 3.多边形的多边形的对角线对角线 4.多边形的多边形的内角和内角和 5.多边形的多边形的外角和外角和 三角形有三个内角、三条边,我们也可以把三角形有三个内角、三条边,我们也可以把三角形称为三边形(但我们习惯称为三角三角形称为三边形(但我们习惯称为三角形)形)你能说出三角形的定义吗?三角形是由三条三条不在同一条直线上的线段首尾顺次连结组成的平面图形 既然我们已经知道什么叫三角形,你能根据三角形既然我们已经知道什么叫三角形,你能根据三角形的定义,说出什么叫四边形吗?的定义,说出什么叫四边形吗?四边

    2、形是由四边形是由四条四条不在同一直线上不在同一直线上的线段首尾顺次连结组成的平面的线段首尾顺次连结组成的平面图形,记为四边形图形,记为四边形ABCD 五边形,它是由五边形,它是由五条五条不在同一直不在同一直线上的线段首尾顺次连结组成的线上的线段首尾顺次连结组成的平面图形,记为五边形平面图形,记为五边形ABCDE 一般地,由一般地,由n条条不在同一直线不在同一直线上的线段首尾顺次连结组成的上的线段首尾顺次连结组成的平面图形称为平面图形称为n边形,又称为边形,又称为多边形多边形那么多边形的定义呢?下面所示的图形也是多边形,但不在我们下面所示的图形也是多边形,但不在我们现在研究的范围内现在研究的范围

    3、内。注注 意意我们现在研究的是如右图所示的多边形,也就是所谓的凸多边形 有什么不同?有什么不同?凹多边形凹多边形凸多边形凸多边形图 8.3.2 1.1.如图如图8.3.2所示,所示,A、D、C、ABC是四是四边形边形ABCD的四个内角的四个内角 3.CBE和和ABF都是与都是与ABC相邻的外角,相邻的外角,两者互为对顶角两者互为对顶角,四边形有八个外角。,四边形有八个外角。既然三角形有三个既然三角形有三个内角、三条边,六个外角,内角、三条边,六个外角,那么四边形有几个内角?几条边?几个外角呢?那么四边形有几个内角?几条边?几个外角呢?2.AB2.AB,BCBC,CDCD,DADA是四边形是四边

    4、形ABCD的四条边的四条边 那么五边形有几个内角?几条边?几个外角呢?那么五边形有几个内角?几条边?几个外角呢?那么六边形有几个内角?几条边?几个外角呢?那么六边形有几个内角?几条边?几个外角呢?那么那么n n边形有几个内角?几条边?几个外角呢?边形有几个内角?几条边?几个外角呢?六边形有六边形有6 6个内角,个内角,6 6条边,条边,1212个外角个外角五边形有五边形有5 5个内角,个内角,5 5条边,条边,1010个外角个外角n n边形有边形有n n个内角,个内角,n n条边,条边,2n2n个外角个外角 请大家细心地填一填,多边形的内角,边,外请大家细心地填一填,多边形的内角,边,外角三者

    5、的关系表,你能发现什么规律?角三者的关系表,你能发现什么规律?3344556677nn681012142n 三角形如果三条边都相等,三个角也都相等,那么这三角形如果三条边都相等,三个角也都相等,那么这样的三角形就叫做样的三角形就叫做正正三角形。三角形。如果多边形各如果多边形各边边都相等,各个都相等,各个角角也都相等,那么也都相等,那么这样的多边形就叫做这样的多边形就叫做正多边形正多边形。如正三角形、正四如正三角形、正四边形(正方形)、正五边形等等边形(正方形)、正五边形等等。正三角形正三角形正四边形正四边形正五边形正五边形正六边形正六边形正八边形正八边形(或正三边形或正三边形)(或正四边形或正

    6、四边形)连结多边形不相邻的两个顶点的线段叫做多边连结多边形不相邻的两个顶点的线段叫做多边形的对角线形的对角线.线段线段AC是四边形是四边形ABCD的一条对角线;的一条对角线;多边形的对角线用虚线表示。多边形的对角线用虚线表示。请大家思考:五边形请大家思考:五边形ABCDE共共有几条对角线有几条对角线呢?呢?五边形五边形ABCDE共共有有5 5条对角线条对角线。请大家思考:六边形请大家思考:六边形ABCDEF共共有几条对角线有几条对角线呢?呢?六边形六边形ABCDEF共共有有9 9条对角线条对角线。有没有什么有没有什么规律呢?规律呢?请问:请问:四四边形从一个顶点出发,能引出几条对角线?边形从一

    7、个顶点出发,能引出几条对角线?请问:请问:五五边形从一个顶点出发,能引出几条对角线?边形从一个顶点出发,能引出几条对角线?请问:请问:六六边形从一个顶点出发,能引出几条对角线?边形从一个顶点出发,能引出几条对角线?请问:请问:N边形从一个顶点出发,能引出几条边形从一个顶点出发,能引出几条对角线对角线?123N-3 我们已经知道一个我们已经知道一个三角形的内角和等于三角形的内角和等于180,那么四边形的内角和等于多少呢?五边形、六边形那么四边形的内角和等于多少呢?五边形、六边形呢?由此,呢?由此,n边形的内角和等于多少呢?边形的内角和等于多少呢?我们学习数学的我们学习数学的基本思想什么?基本思想

    8、什么?化未知为已知化未知为已知 那么我们能不能利用那么我们能不能利用三角形的三角形的内角和,来求内角和,来求出四边形的内角和,以出四边形的内角和,以及五边形、六边形,及五边形、六边形,n边形的内角和?边形的内角和?请你认真地想一想,你能通过怎样的方法把多边形请你认真地想一想,你能通过怎样的方法把多边形转化转化为三角形?为三角形?345n-2540 720 900 180 (n-2)1.从一个顶点出发从一个顶点出发由此,我们就可以得出:n边形的内角和为边形的内角和为_(n-2)180 它有什么作用它有什么作用呢呢?1.知道多边形的边数知道多边形的边数,可以求出多边形的度数可以求出多边形的度数.2

    9、.知道多边形的度数知道多边形的度数,可以求出多边形的边数可以求出多边形的边数.例1.求八边形的内角和的度数 解(n2)180=(82)180=1 080 分析分析:n边形的内角和公式为边形的内角和公式为(n-2)180 ,现在知道这个多边形的边数是,现在知道这个多边形的边数是,代入这个公式既可求出代入这个公式既可求出.老师老师,可以用计算器吗可以用计算器吗?例2.已知多边形的内角和的度数为900,则这个多边形的边数为_ 解(n2)180=900 (n2)=900/180 (n2)=5 n=5+2 n=77哇哇!这么简单呀这么简单呀!例例3.已知在一个十边形中,九个内角的和的度数已知在一个十边形

    10、中,九个内角的和的度数是是1290,求这个十边形的另一个内角的度数,求这个十边形的另一个内角的度数.解:(102)180=1440 则十边形的另一个内角的度数为十边形的另一个内角的度数为 1440-1290=150 先求出十边形的内角和先求出十边形的内角和再减去再减去1290,就可以得出就可以得出.那么对于正多边形来说那么对于正多边形来说,又遇到怎样的问题呢又遇到怎样的问题呢?因为正多边形的每个角相等因为正多边形的每个角相等,所以知道所以知道正多边形的边数正多边形的边数,就可以求出每一个内角的度数就可以求出每一个内角的度数.(n2)180/n例例4.正五边形的每一个正五边形的每一个内内角等于角

    11、等于_,外角等于外角等于_.例例5.如果一个正多边形的一个内角等于如果一个正多边形的一个内角等于120,则这则这个多边形的边数是个多边形的边数是_ 解解:(n2)180/n=(52)180/5=540/5=108 解:120n=(n2)180 120n=n180-360 60n=360 n=6例例5.如果一个正多边形的一个内角等于如果一个正多边形的一个内角等于150,则这个则这个多边形的边数是多边形的边数是_A.12 B.9 C.8 D.7A例例7.如果一个多边形的边数增加如果一个多边形的边数增加1,则这个多边形的则这个多边形的内角和内角和_增加增加180 例例6.如果一个多边形的每一个外角等

    12、于如果一个多边形的每一个外角等于30,则这个则这个多边形的边数是多边形的边数是_ 解解;设五边形中前四个角的度数分别是设五边形中前四个角的度数分别是x,2x,3x,4x,则第五个角度数是则第五个角度数是x+100.X+2x+3x+4x+x+100=(52)180 11X+100=540 11X=440 X=40 则这个五边形的内角分别为则这个五边形的内角分别为40,80,120,160,140.例例8.五边形中五边形中,前四个角的比是前四个角的比是1:2:3:4,第五个角比最第五个角比最小角多小角多100,则这个五边形的内角分别为则这个五边形的内角分别为_ 请你认真地想一想,你能通过怎样的方法

    13、把多边形请你认真地想一想,你能通过怎样的方法把多边形转化转化为三角形?为三角形?23456n-1180 36 0 540 720 900 180 (n-1)-180 2.从边上的一个点出发从边上的一个点出发 请你认真地想一想,你能通过怎样的方法把多边形请你认真地想一想,你能通过怎样的方法把多边形转化转化为三角形?为三角形?34567n180 36 0 540 720 900 180 n-3603.从多边形内一个点出发从多边形内一个点出发 请你认真地想一想,你能通过怎样的方法把多边形请你认真地想一想,你能通过怎样的方法把多边形转化转化为三角形?为三角形?180 n-36 0=180 n-2X18

    14、0=180(n-2)4.从多边形外一个点出发从多边形外一个点出发 前面我们学习了三角形的外角和是前面我们学习了三角形的外角和是360 ,当时是怎样研究出来的?当时是怎样研究出来的?ABCDEF1.先把三角形的三个外角和三个先把三角形的三个外角和三个内角这六个角内角这六个角的和求出来,刚好是三个平角。的和求出来,刚好是三个平角。2.再用这六个角的和减去三个内角的和,剩下再用这六个角的和减去三个内角的和,剩下的就是三角形的外角和了!的就是三角形的外角和了!图 8.3.6 那么你能研究出四边形的外角和吗?那么你能研究出四边形的外角和吗?整体思路:1.先求4个外角+4个内角的和;内角的和;2.再减去再

    15、减去4个内角的和个内角的和容易看出,容易看出,4个外角个外角+4个个内角内角=4个平角个平角而而4个个内角的和是内角的和是360 ,那么那么四边形的外角和四边形的外角和就是就是4X 180-360=360那么出五边形,六边形,那么出五边形,六边形,n边形的外角和吗?边形的外角和吗?五边形的外角和五边形的外角和就是就是5X 180-540=360 六边形的外角和六边形的外角和就是就是6X 180-720=360。n边形的外角和边形的外角和就是就是nX 180-(n-2)X 180=(n-n+2)X 180=360 任任意意多多边边形形的的外外角角和和都都为为360 例例9.正五边形的每一个外角等

    16、于正五边形的每一个外角等于_.每一个内角等于每一个内角等于_,72144例例10.如果一个正多边形的一个内角等于如果一个正多边形的一个内角等于120,则这则这个多边形的边数是个多边形的边数是_6例例11.如果一个正多边形的一个内角等于如果一个正多边形的一个内角等于150,则这则这个多边形的边数是个多边形的边数是_A.12 B.9 C.8 D.7A例例12.如果一个多边形的每一个外角等于如果一个多边形的每一个外角等于30,则这则这个多边形的边数是个多边形的边数是_12例例13.一个正多边形的一个内角和是外角和的一个正多边形的一个内角和是外角和的2倍倍,则则这个多边形为这个多边形为()A.三角形三

    17、角形 B.四边形四边形 C.五边形五边形 D.六边形六边形例例14.一个正多边形的一个内角和与外角和的比一个正多边形的一个内角和与外角和的比是是7:2,则这个多边形的边数为则这个多边形的边数为()思考一:一个三角形中,它的内角最多可以有几个锐角?思考一:一个三角形中,它的内角最多可以有几个锐角?为什么?为什么?思考二:一个四边形中,它的内角最多可以有几个锐角?思考二:一个四边形中,它的内角最多可以有几个锐角?为什么?为什么?思考三:一个多边形中,它的内角最多可以有几个锐角?思考三:一个多边形中,它的内角最多可以有几个锐角?为什么?为什么?一个多边形中,它的外角最多可以有几个钝角?一个多边形中,它的外角最多可以有几个钝角?3 今天你学到了什么知识?你能用自己的话说说吗?同学们同学们:路漫漫而其修远兮路漫漫而其修远兮!吾将上下而求索吾将上下而求索!与多边形的每个内角相邻的外角分别有两个,与多边形的每个内角相邻的外角分别有两个,这两个外角是对顶角从与每个内角相邻的两这两个外角是对顶角从与每个内角相邻的两个外角中分别取一个相加,得到的和称为多边个外角中分别取一个相加,得到的和称为多边形的外角和形的外角和

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:《多边形的内角和与外角和》课件-03.ppt
    链接地址:https://www.163wenku.com/p-4458142.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库