苏教版小学数学五年级下册《第七单元解决问题的策略转化课件》全部教案.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《苏教版小学数学五年级下册《第七单元解决问题的策略转化课件》全部教案.doc》由用户(副主任)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第七单元解决问题的策略转化课件 苏教版 小学 数学 年级 下册 第七 单元 解决问题 策略 转化 课件 全部 教案 下载 _五年级下册_苏教版(2024)_数学_小学
- 资源描述:
-
1、第七单元 解决问题的策略教学目标:1.使学生在解决问题的过程中学会用“转化”的策略寻求解决问题的思路,并能根据具体的问题确定合理的解题步骤,从而有效地解决问题。2.使学生在对自己解决实际问题过程的不断反思中,感受“转化”的策略对于解决特定问题的价值,进一步发展分析、综合和简单推理的能力。3.使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。教学重难点:重点:学会用“转化”的策略寻求解决问题的思路。难点:能根据具体的问题确定合理的解题步骤,从而有效地解决问题。课时安排:解决问题的策略2课时 第一课时 用“转化”的策略解决问题(1)授课类型新授课教
2、学目标1.使学生初步学会运用转化的策略分析问题,灵活确定解决问题的思路,并能根据问题的特点确定具体的转化方法,从而有效地解决问题。2.使学生通过回顾曾经解决问题的过程,从策略的角度进一步体会知识之间的联系,感受转化策略的应用价值。3.使学生进一步积累运用转化策略解决问题的经验,增强解决问题的策略意识,主动克服在解决问题中遇到的困难,获得的成功的体验。教学重难点理解转化策略的价值,丰富学生的策略意识,初步掌握转化的方法和技巧。教学方法讨论、观察教学手段多媒体课件教时安排共 2时教学过程一、故事引入,初步体验转化。阿普顿是美国普林斯顿大学数学系毕业的高材生,对没有大学文凭的爱迪生有点瞧不起。有一次
3、,爱迪生让他测算一只梨形灯泡的容积。于是,他拿起灯泡,测出了他的直径高度,然后加以计算。但是灯泡不具有规则形状:它像球形,又不像球形;像圆柱体,又不像圆柱体。计算很复杂。即使是近似处理也很繁琐。他画了草图,在好几张白纸上写满了密密麻麻的数据算式,也没有算出来。爱迪生等了很长时间,也不见阿普顿报告结果。他走过来一看,便忍不住笑出了声,“你还是换种方法吧!”只见爱迪生取来一杯水。轻轻地往阿普顿刚才反复测算的灯泡里倒满了水,然后把水倒进量筒,几秒种就测出了水的体积,当然也就算出了灯泡的容积。这时羞红了脸的阿普顿傻呆呆地站在一旁,恨不得找条地缝钻下去。这个故事让你联想到什么?将求不规则物体的体积转化成
4、求水的体积,用到了一个重要的策略转化。二、观察交流,明确转化的策略1、出示例1:师:这两个图形像什么啊?你觉得这两个图形的面积相等吗?仔细观察图形,你准备怎样比较这两个图形的面积。师:思考后再在小组里交流自己是怎样想的。学生可能有两种想法:(1)数方格计算每个图形的面积后再比较。提醒学生把方格线补画完整。(2)将两个图形分别转化成长方形,再比较它们的面积。如果学生说出这一种想法,则引导用数方格的方法要注意什么?如果没有学生说出第二种想法,则引用书上:能否把原来的图形都转化成长方形,再比一比。自己在方格纸上画一画。结合学生回答实物投影演示学生方法。交流:(1)第一个图形是怎样转化成长方形的?你是
5、怎样想到把上面的半圆进行平移的?上面的半圆向什么方向平移了几格?(2)第二个图形是怎样转化成长方形的?你是怎样想到把左右两个半圆进行旋转的?左右两个半圆分别旋转了多少度?(3)现在你怎样看出这两个图形的面积相等吗?比较面积是否相等什么可以变什么不能变?小结:刚才我们在解决这个问题时,为什么要把原来的图形转化成长方形?(原来的复杂,转化后简单便于比较)板书:不规则 规则二、回顾转化实例,感受转化的价值引导:实际在以往的学习中,我们曾经多次运用转化的策略解决过哪些问题?小组在一起讨论。学生充分列举,教师根据学生回答出示教材图示。曾经在推导很多图形的面积或体积公式时用过转化策略学生小组交流后汇报时引
展开阅读全文