3.2.1立体几何中的向量方法-课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《3.2.1立体几何中的向量方法-课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 3.2 立体几何 中的 向量 方法 课件
- 资源描述:
-
1、3lAPa 直线的方向向量直线的向量式方程 换句话说换句话说,直线上的非零向量直线上的非零向量叫做叫做直线的直线的方向向量方向向量APta 一、方向向量与法向量2、平面的法向量、平面的法向量Aa lP平面平面 的向量式方程0a AP 换句话说换句话说,与平面垂直的与平面垂直的非零向量非零向量叫做平面叫做平面的的法法向量向量oxyzABCO1A1B1C1例1.如图所示,正方体的棱长为1(1)直线OA的一个方向向量坐标为_(2)平面OABC 的一个法向量坐标为_(3)平面AB1C 的一个法向量坐标为_(-1,-1,1)(0,0,1)(1,0,0)例例2 练习练习 如图,在四棱锥如图,在四棱锥P-A
2、BCD中,底面中,底面ABCD是是正方形,侧棱正方形,侧棱PD底面底面ABCD,PD=DC=1,E是是PC的中点,的中点,求平面求平面EDB的一个法向量的一个法向量.ABCDP PE E解:如图所示建立空间直角坐标系解:如图所示建立空间直角坐标系.(0,0,0),(0,0,1),1 1(0,)2 2PE依依题题意意得得D DB(1,1,B(1,1,0)0)1 1(0,)2 2DE DB=(1,1,DB=(1,1,0)0)XYZ设平面设平面EDB的法向量为的法向量为(,1)nx y,nnDEDB 则1101,1,1220ynxy于是 因为方向向量与法向量可以确定因为方向向量与法向量可以确定直线和
3、平面的位置,所以我们可以利直线和平面的位置,所以我们可以利用直线的用直线的方向向量方向向量与平面的与平面的法向量法向量表表示空间直线、平面间的示空间直线、平面间的平行、垂直、平行、垂直、夹角、距离夹角、距离等位置关系等位置关系.用向量方法解决几何问题mlab一一.平行关系:平行关系:au aAC axAByAD v u 例例1 四棱锥四棱锥P-ABCD中,底面中,底面ABCD是正方形是正方形,PD底面底面ABCD,PD=DC=6,E是是PB的中点,的中点,DF:FB=CG:GP=1:2.求证:求证:AE/FG.ABCDP PG GXYZF FE EA(6,0,0),F(2,2,0),E(3,3
4、,3),G(0,4,2),AE=(-3,3,3),FG=(-2,2,2)AE=(-3,3,3),FG=(-2,2,2)32 AE=FGAE=FGAE/FG 证证 :如图所示:如图所示,建立建立空间直角坐标系空间直角坐标系./AEFGAEFGAEAE与与FGFG不共线不共线几何法呢?几何法呢?例例2 四棱锥四棱锥P-ABCD中,底面中,底面ABCD是正方形,是正方形,PD底面底面ABCD,PD=DC,E是是PC的中点,的中点,(1)求证:求证:PA/平面平面EDB.ABCDP PE EXYZG解解1 立体立体几何法几何法ABCDP PE EXYZG解解2:如图所示建立空间直角坐标系,点:如图所示
5、建立空间直角坐标系,点D为坐标原点,设为坐标原点,设DC=1(1)证明:连结证明:连结AC,AC交交BD于点于点G,连结连结EG(1,0,0),(0,0,1),1 1(0,)2 2APE依依题题意意得得G1 11 1(,,(,,0)0)2 22 211(1,0,1),(,0,)22PAEG EGPAEGPA/2,即所以,EGEDBPAEDB而平面且平面EDBPA 平面所以,/ABCDP PE EXYZ解解3:如图所示建立空间直角坐标系,点:如图所示建立空间直角坐标系,点D为坐标原点,设为坐标原点,设DC=1(1)证明:证明:1 1(1,0,0),(0,0,1),(0,),2 2APE依依题题意
6、意得得B(1,1,B(1,1,0)0)(1,0,1),PA PAEDB而平面EDBPA 平面所以,/1 1(0,)2 2DE DB=(1,1,DB=(1,1,0)0)设平面设平面EDB的法向量为的法向量为(,1)nx y,nnDEDB 则1101,1,1220ynxy于是0PA nPAn ABCDP PE EXYZ解解4:如图所示建立空间直角坐标系,点:如图所示建立空间直角坐标系,点D为坐标原点,设为坐标原点,设DC=1(1)证明:证明:1 1(1,0,0),(0,0,1),(0,),2 2APE依依题题意意得得B(1,1,B(1,1,0)0)(1,0,1),PA PAEDB而平面EDBPA
7、平面所以,/1 1(0,)2 2DE DB=(1,1,DB=(1,1,0)0)PAxDEyDB 设解得解得 x,2PADEDB 即PADEDB 于是、共面ABCDADEFNM,AEBD,11,33BMBD ANAE,/MNCDE平平面面练习练习如图,已知矩形如图,已知矩形和矩形和矩形所在平面相交于所在平面相交于ADAD,点,点分别在对角线分别在对角线上,且上,且求证:求证:2133DCDE MNMDDEEN 证明2233DBDEEA 22()()33DADCDEDADE ABCEFDMN MNDCDE 所以、共面/MNCDE故故平平面面MNCDE 但但平平面面几何法呢?几何法呢?(1)lm0a
8、ba b 二、垂直关系:二、垂直关系:lmab(2)l /auau lauABC3 ()0uvu v u v 例1 四面体ABCD的六条棱长相等,AB、CD的中点分别是M、N,求证MNAB,MNCD.证1 几何法例1 四面体ABCD的六条棱长相等,AB、CD的中点分别是M、N,求证MNAB,MNCD.证2 如图所示建立空间直角坐标系,设AB=2.xyZxy(0,0,0)B(0,2,0)D(3,1,0)C32 6(,1,)33A3 16(,)623M3 3(,0)22N例1 四面体ABCD的六条棱长相等,AB、CD的中点分别是M、N,求证MNAB,MNCD.证3MAADDN 1122ABADDC
9、 11()22ABADACAD 111222ABACAD 111()0222MN ABABACADAB MNAB,同理 MNCD.练习练习 棱长为棱长为a a 的正方体的正方体 中中,E,E、F F分别是棱分别是棱AB,OAAB,OA上的动点,且上的动点,且AF=BE,AF=BE,求证:求证:CBAOOABC OCBAOAB CEFZ11A FO Exy 解:如图所示建立空间直角坐标系,设AF=BE=b.1(,)A a a a(0,0)Fab1(0,0,)Oa(,0)E ab a1(,)A Faba 1(,)O Eab aa 110A F O E 11A FO E 1A FO EABCDPEF
10、XYZ-,.(2):.PABCDABCDPDABCD PDDCEPCEFPBPBFPBEFD 例例2 2.四四棱棱锥锥中中 底底面面是是正正方方形形底底面面点点是是的的中中点点 作作交交于于点点求求证证平平面面 证1:如图所示建立空间直角坐标系,设DC=1.)1,1,1(PB021210故DEPB)21,21,0(DEDEPB 所以,EDEEFPBEF且由已知EFDPB平面所以例例2ABCDPEFXYZ-,:.PABCDABCDPDABCD PDDCEPCEFPBPBFPBEFD 例例2 2.四四棱棱锥锥中中底底面面是是正正方方形形底底面面点点是是的的中中点点作作交交于于点点求求证证平平面面
11、证2:例例2A1xD1B1ADBCC1yzEF是是BB1,1,,CD中点,求证:中点,求证:D1F1111DCBAABCD 练习练习 正方体正方体中,中,E、F分别分别平面平面ADE.证明:设正方体棱长为证明:设正方体棱长为1,为单位为单位正交正交 基底,建立如图所示坐标系基底,建立如图所示坐标系D-xyz,1,DADCDD 以以,1(1,0,0)(1,1,)2DADE ,11(0,1)2D F 00DADE 则则,所以所以1D FADE 平平面面DADE 则则,A1xD1B1ADBCC1yzEF是是BB1,1,,CD中点,求证:中点,求证:D1F1111DCBAABCD 练习练习 正方体正方
12、体中,中,E、F分别分别平面平面ADE.证明证明2:,E,E是是AA1 1中点,中点,1111DCBAABCD 例例3 3 正方体正方体平面平面C1 1BD.证明:证明:E求证:求证:平面平面EBD设正方体棱长为设正方体棱长为2,建立如图所示坐标系建立如图所示坐标系平面平面C1BD的一个法向量是的一个法向量是E(0,0,1)D(0,2,0)B(2,0,0)(2,0,1)EB (0,2,1)ED 设平面设平面EBD的一个法向量是的一个法向量是(,1)ux y0u EBu ED 由1 1(,1)2 2u 得1(1,1,1)vCA 0,u v 平面平面C1 1BD.平面平面EBD 证明证明2:E,E
13、,E是是AA1 1中点,中点,1111DCBAABCD 例例3 3 正方体正方体平面平面C1 1BD.求证:求证:平面平面EBD-,:P ABCDABCDPDABCD GPB 练练习习 四四棱棱锥锥中中 底底面面是是正正方方形形底底面面是是上上的的点点求求证证 平平面面GACGAC平平面面PDBPDBABCDPXYZG练习:练习:夹角问题:夹角问题:lamb(1),l m的夹角为,coscos,a b lamb 夹角问题:夹角问题:(2),l的夹角为,sincos,a u u cos(-cos(-)=cos)=cos 2 2u cos(+cos(+)=cos)=cos 2 2 ula ula
14、夹角问题:夹角问题:(3),的夹角为,u v coscos =cos=cos u v 夹角问题:夹角问题:(3),的夹角为,u v coscos =cos=cos u v xyz 解1:以点C为坐标原点建立空间直角坐标系 如图所示,设 则:Cxyz11CC(1,0,0),(0,1,0),AB1111 1(,0,),(,1)22 2Fa D11(,0,1),2AF 11 1(,1)2 2D B 11cos,AF BD 1111|AF BDAFBD A1AB1BC1C1D1F3030=.=.1010所以 与 所成角的余弦值为1BD1AF30100111111111111 ,90Rt ABCBCAA
15、BCABCABCBCCACCABACDFAFD B例 中,现将沿着平面的法向量平移到位置,已知取、的中点、,求与所成的角的余弦值.例例10111111111111 ,90Rt ABCBCAABCABCABCBCCACCABACDFAFD B例 中,现将沿着平面的法向量平移到位置,已知取、的中点、,求与所成的角的余弦值.A1AB1BC1C1D1F解3、补形:例例1解2补成长方体补成长方体重一个同样的三重一个同样的三棱柱棱柱 练习练习 空间四边形空间四边形ABCD中,中,AB=BC=CD,ABBC,BCCD,AB与与CD成成600角,求角,求AD与与BC所成的角大小所成的角大小.1AB 解 设AD
展开阅读全文