14.1.4整式的乘法第3课时课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《14.1.4整式的乘法第3课时课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 14.1 整式 乘法 课时 课件
- 资源描述:
-
1、141.1.理解并掌握多项式乘以多项式的法则理解并掌握多项式乘以多项式的法则.3.3.培养数学感知,体验数学在实际应用中的价值,树立良培养数学感知,体验数学在实际应用中的价值,树立良好的学习态度好的学习态度.2.2.经历探索多项式与多项式相乘的过程,通过导图,理解经历探索多项式与多项式相乘的过程,通过导图,理解多项式与多项式相乘的结果,能够按多项式乘法步骤进行多项式与多项式相乘的结果,能够按多项式乘法步骤进行简单的多项式乘法的运算,达到熟练进行多项式的乘法运简单的多项式乘法的运算,达到熟练进行多项式的乘法运算的目的算的目的.)3)(8(2ab a 2 3222 33x y(x1)(x1)3x
2、y ba324326yx计算:计算:1.1.单项式乘以单项式单项式乘以单项式2.2.单项式乘以多项式单项式乘以多项式问题:问题:为了扩大街心花园的绿地面积为了扩大街心花园的绿地面积,把一块原长把一块原长a m,a m,宽宽p mp m的长方形绿地的长方形绿地,加长了加长了b m,b m,加宽了加宽了q m.q m.你能用几种方你能用几种方法求出扩大后的绿地面积法求出扩大后的绿地面积?【解析】【解析】扩大后的绿地可以看成长为扩大后的绿地可以看成长为(a a+b b)m,)m,宽为宽为(p p+q q)m)m的的长方形长方形,所以这块绿地的面积为所以这块绿地的面积为(a a+b b)()(p p+
3、q q)m)m2 2.扩大后的绿地还可以看成由四个小长方形组成扩大后的绿地还可以看成由四个小长方形组成,所以所以这块绿地的面积为这块绿地的面积为(ap+aq+bp+bq)m(ap+aq+bp+bq)m2 2.因此,因此,(a+b)(p+q)=ap+aq+bp+bq多项式与多项式相乘的法则:多项式与多项式相乘的法则:多项式与多项式相乘多项式与多项式相乘,先用一个多项式的每一项先用一个多项式的每一项乘另一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加再把所得的积相加.(a+b)(p+q)=ap+aq+bp+bq(a+b+c)(p+q(a+b+c)(p+q)=ap+aq+bp+bq+cp+
4、cq=ap+aq+bp+bq+cp+cq结论:结论:【例【例1 1】计算】计算:(1)(1)(3(3x x+1)(+1)(x x-2);(2)(-2);(2)(x x-8-8y y)()(x x-y y).).【解析】【解析】(1)(3x+1)(x-2)(1)(3x+1)(x-2)=(3x)=(3x)x+(3x)x+(3x)(-2)+1(-2)+1x+1x+1(-2)(-2)=3x =3x2 2-6x+x-2-6x+x-2 =3x =3x2 2-5x-2.-5x-2.(2)(2)(x-8y)(x-y)(x-8y)(x-y)=x =x2 2-xy-8xy+8y-xy-8xy+8y2 2 =x =
5、x2 2-9xy+8y-9xy+8y2 2.注意:注意:1.1.不要漏乘不要漏乘 2.2.注意符号注意符号 3.3.结果化为最简形式结果化为最简形式【例题】【例题】(3)(x+y)(2x(3)(x+y)(2xy)(3x+2y).y)(3x+2y).(1)(1)(x+y)(x+y)2 2.(2)(x+y)(x.(2)(x+y)(x2 2y+yy+y2 2).).【例例2 2】计算计算(3 3)原式)原式=(2x2x2 2-xy+2xy-y-xy+2xy-y2 2)(3x+2y)(3x+2y)=(2x =(2x2 2+xy-y+xy-y2 2)(3x+2y)(3x+2y)=6x =6x3 3+4x
6、+4x2 2y+3xy+3x2 2y+2xyy+2xy2 2-3xy-3xy2 2-2y-2y3 3 =6x =6x3 3+7x+7x2 2y-xyy-xy2 2-2y-2y3 3.【解析】【解析】(1)1)原式原式=(x+yx+y)()(x+y)x+y)=x =x2 2+xy+xy+y+xy+xy+y2 2 =x =x2 2+2xy+y+2xy+y2 2.(2 2)原式)原式=x=x3 3y+xyy+xy2 2+x+x2 2y y2 2+y+y3 3.计算计算 (1)(2x+1)(x+3).(2)(m+2n)(m+3n).(1)(2x+1)(x+3).(2)(m+2n)(m+3n).(3)(
展开阅读全文