(课件)人教版选修23《31回归分析的基本思想及其初步应用》.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《(课件)人教版选修23《31回归分析的基本思想及其初步应用》.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 课件 31回归分析的基本思想及其初步应用 人教版 选修 23 31 回归 分析 基本 思想 及其 初步 应用
- 资源描述:
-
1、 比数学3中“回归”增加的内容数学统计1.画散点图画散点图2.了解最小二乘法了解最小二乘法的思想的思想3.求回归直线方程求回归直线方程ybxa4.用回归直线方程用回归直线方程解决应用问题解决应用问题选修2-1统计案例5.引入线性回归模型引入线性回归模型ybxae6.了解模型中随机误差项了解模型中随机误差项e产产生的原因生的原因7.了解相关指数了解相关指数 R2 和模型拟和模型拟合的效果之间的关系合的效果之间的关系8.了解残差图的作用了解残差图的作用9.利用线性回归模型解决一类利用线性回归模型解决一类非线性回归问题非线性回归问题10.正确理解分析方法与结果正确理解分析方法与结果问题问题1 1:正
2、方形的面积正方形的面积y y与正方形的边长与正方形的边长x x之间之间 的的函数关系函数关系是是y=xy=x2 2确定性关系确定性关系问题问题2 2:某水田水稻产量某水田水稻产量y y与施肥量与施肥量x x之间是否之间是否 -有一个确定性的关系?有一个确定性的关系?例如:例如:在在 7 7 块并排、形状大小相同的试验田块并排、形状大小相同的试验田上上 进行施肥量对水稻产量影响的试验,得到进行施肥量对水稻产量影响的试验,得到如下所示的一组数据:如下所示的一组数据:施化肥量施化肥量x x 15 20 25 30 35 40 45 15 20 25 30 35 40 45水稻产量水稻产量y y 33
3、0 345 365 405 445 450 455 330 345 365 405 445 450 455复习复习:变量之间的两种关系变量之间的两种关系自变量取值一定时,因变量的取值带有一定随自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系叫做机性的两个变量之间的关系叫做相关关系相关关系。1 1、定义:、定义:1 1):相关关系是一种不确定性关系;):相关关系是一种不确定性关系;注注对具有相关关系的两个变量进行对具有相关关系的两个变量进行统计分析的方法叫统计分析的方法叫回归分析回归分析。2 2):):2 2、现实生活中存在着大量的相关关系。现实生活中存在着大量的相关关系。探索:
4、水稻产量探索:水稻产量y y与施肥量与施肥量x x之间大致有何之间大致有何规律?规律?10 20 30 40 5010 20 30 40 50500500450450400400350350300300发现:图中各点,大致分布在某条直线附近。发现:图中各点,大致分布在某条直线附近。探索:在这些点附近可画直线不止一条,探索:在这些点附近可画直线不止一条,哪条直线最能代表哪条直线最能代表x x与与y y之间的关系呢?之间的关系呢?x xy y施化肥量施化肥量水稻产量水稻产量施化肥量施化肥量x x 15 20 25 30 35 40 45 15 20 25 30 35 40 45水稻产量水稻产量y
5、y 330 345 365 405 445 450 455 330 345 365 405 445 450 455散点图散点图例例1 从某大学中随机选取从某大学中随机选取8名女大学生,其身高和体重数据如下表所示。名女大学生,其身高和体重数据如下表所示。编号12345678身高/cm165165 157 170 175 165 155 170体重/kg4857505464614359求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为172cm的女大学生的体重。的女大学生的体重。解:解:1、选取身高为自变量、选取身高为自
6、变量x,体重为因变量,体重为因变量y,作散点图:,作散点图:2、由散点图知道身高和体重有比较好的、由散点图知道身高和体重有比较好的线性相关关系,因此可以用线性回归方程线性相关关系,因此可以用线性回归方程刻画它们之间的关系。刻画它们之间的关系。3、从散点图还看到,样本点散布在某一条、从散点图还看到,样本点散布在某一条直线的附近,而不是在一条直线上,所以直线的附近,而不是在一条直线上,所以不能用一次函数不能用一次函数y=bx+a描述它们关系描述它们关系。我们可以用下面的我们可以用下面的线性回归模型线性回归模型来表示:来表示:y=bx+a+e,其中,其中a和和b为模型的未知参数,为模型的未知参数,e
7、称为随机误差称为随机误差。思考思考产生随机误差项产生随机误差项e的原因是什么?的原因是什么?思考思考产生随机误差项产生随机误差项e的原因是什么?的原因是什么?随机误差随机误差e e的来源的来源(可以推广到一般):可以推广到一般):1、其它因素的影响:影响体重y 的因素不只是身高 x,可能还包括遗传基因、饮食习惯、生长环境等因素;2、用线性回归模型近似真实模型所引起的误差;3、身高 x 的观测误差。函数模型与回归模型之间的差别函数模型与回归模型之间的差别函数模型:abxy回归模型:eabxy可以提供选择模型的准则例例1 从某大学中随机选取从某大学中随机选取8名女大学生,其身高和体重数据如下表所示
8、。名女大学生,其身高和体重数据如下表所示。5943616454505748体重/kg170155165175170157165165身高/cm87654321编号求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为172cm的女大学生的体重。的女大学生的体重。根据最小二乘法估计 和 就是未知参数a和b的最好估计,abniiniiiniiniiixnxyxnyxxbyaxxyyxxb1221121)()(制表7 8 合计654321ixy ,ixxiyy()()iixx yy2()ixxniiniiynyxnx1111,
9、其中所以回归方程是所以回归方程是0.84985.712yx所以,对于身高为所以,对于身高为172cm的女大学生,由回归方程可以预报的女大学生,由回归方程可以预报其体重为其体重为0.849 7285.71260.316()ykg(,)x y 称为样本点的中心探究:探究:身高为身高为172cm的女大学生的体重一定是的女大学生的体重一定是60.316kg吗?吗?如果不是,你能解析一下原因吗?如果不是,你能解析一下原因吗?例例1 从某大学中随机选取从某大学中随机选取8名女大学生,其身高和体重数据如下表所示。名女大学生,其身高和体重数据如下表所示。5943616454505748体重/kg1701551
10、65175170157165165身高/cm87654321编号求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为172cm的女大学生的体重。的女大学生的体重。712.85849.0ab,于是得到探究:探究:身高为身高为172cm的女大学生的体重一定是的女大学生的体重一定是60.316kg吗?如果不是,你能解析一下原因吗?吗?如果不是,你能解析一下原因吗?答:身高为答:身高为172cm的女大学生的体重不一定是的女大学生的体重不一定是60.316kg,但一般可以认为她的体重在,但一般可以认为她的体重在60.316kg左
11、右。左右。60.136kg不是每个身高为不是每个身高为172cm的女大学生的体重的女大学生的体重的预测值,而是所有身高为的预测值,而是所有身高为172cm的女大学生的女大学生平均平均体重的预测值体重的预测值。函数模型与回归模型之间的差别函数模型与回归模型之间的差别函数模型:abxy回归模型:eabxy 线性回归模型线性回归模型y=bx+a+e增加了随机误差项增加了随机误差项e,因变量,因变量y的值的值由自变量由自变量x和随机误差项和随机误差项e共同确定,即共同确定,即自变量自变量x只能解析部分只能解析部分y的变化的变化。在统计中,我们也把自变量在统计中,我们也把自变量x称为解析变量,因变量称为
12、解析变量,因变量y称为预称为预报变量。报变量。1.用相关系数用相关系数 r 来衡量来衡量2.公式:公式:12211niiinniiiixxyyrxxyy求出线性相关方程后,求出线性相关方程后,说明身高说明身高x每每增加一个单位增加一个单位,体重体重y就增加就增加0.849个单位个单位,这表这表明体重与身高具有正的线性相关关系明体重与身高具有正的线性相关关系.如何描如何描述它们之间线性相关关系的强弱呢述它们之间线性相关关系的强弱呢?849.0b00rxyrxy当时,表示 与 为正相关;当时,表示 与 为负相关、当、当 时,时,x x与与y y为完全线性相关,它们之为完全线性相关,它们之间存在确定
13、的函数关系。间存在确定的函数关系。、当、当 时,表示时,表示x x与与y y存在着一定的线存在着一定的线性相关,性相关,r r的绝对值越大,越接近于的绝对值越大,越接近于1 1,表示,表示x x与与y y直线相关程度越高,反之越低。直线相关程度越高,反之越低。1r10 r3.性质:性质:0.751,1,0.75,0 25,0.25,rrr 当,表明两个变量正相关很强;当表明两个变量负相关很强;当.表明两个变量相关性较弱。相关关系的测度相关关系的测度(相关系数取值及其意义)对回归模型进行统计检验对回归模型进行统计检验思考:思考:如何刻画预报变量(体重)的变化?这个变化在多大程度上如何刻画预报变量
14、(体重)的变化?这个变化在多大程度上与解析变量(身高)有关?在多大程度上与随机误差有关?与解析变量(身高)有关?在多大程度上与随机误差有关?假设身高和随机误差的不同不会对体重产生任何影响,那么所假设身高和随机误差的不同不会对体重产生任何影响,那么所有人的体重将相同。有人的体重将相同。在体重不受任何变量影响的假设下,设在体重不受任何变量影响的假设下,设8名女名女大学生的体重都是她们的平均值,即大学生的体重都是她们的平均值,即8个人的体重都为个人的体重都为54.5kg。54.554.554.554.554.554.554.554.5体重/kg170155165175170157165165身高/c
展开阅读全文