第五节控制系统的根轨迹分析法课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《第五节控制系统的根轨迹分析法课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 五节 控制系统 轨迹 分析 课件
- 资源描述:
-
1、2022-12-10 利用根轨迹,可以对闭环系统的性能进行分析和校正v 由给定参数确定闭环系统的零极点的位置;v 分析参数变化对系统稳定性的影响;v 分析系统的瞬态和稳态性能;v 根据性能要求确定系统的参数;v 对系统进行校正。2022-12-10一、条件稳定系统的分析 例4-11:设开环系统传递函数为:)14.1)(6)(4()42()(22sssssssksGgk试绘制根轨迹并讨论使闭环系统稳定时 的取值范围。gk 开环极点:0,-4,-6,零点:714.07.0j732.11j 实轴上根轨迹区间:0,4),6,(渐进线:与实轴的交点:13.3324.164mnzpii,3)12(mnk倾
2、角:解根据绘制根轨迹的步骤,可得:0462022-12-10 分离角(点):2d22)(,42)(2ssNsssNssssssD246.43394.11)(2345242.871176.455)(234sssssD3.9497.4579.3758.805.97131.6280-4-3.5-3-2.5-2.0-1.5-1-0.50 sgdk 的最大值为9.375,这时s=-2.5,是近似分离点。gdk由:dsgdsNsDksDsNsDsN|)()(0)()()()(可以求得分离点。近似求法:分离点在-4,0之间。2022-12-10 入射角:1032 与虚轴的交点(略)。这时的增益值:195,6
3、4,14gpk64gk64gk14gk14gk195gk195gk由图可知:当 和 时系统是稳定的(为什么?);当 时,系统是不稳定的。140gk19564gk6414195ggkk和左图是用Matlab工具绘制的。2022-12-10条件稳定系统:参数在一定的范围内取值才能使系统稳定,这样的系统叫做条件稳定系统。v 具有正反馈的环节。下面的系统就是条件稳定系统的例子:v 开环非最小相位系统,其闭环系统的根轨迹必然有一部分在s的右半平面;2022-12-10例非最小相位系统:,试确定使系统稳定时的增益值。)2)(1()(ssksGgk解:根轨迹如右:有闭环极点在右半平面,系统是不稳定的。显然稳
4、定临界点在原点。该点的增益临界值为 。gpk闭环特征方程为:,当s=0时,所以,系统稳定的条件是:022gkss2gpk2gk2022-12-10二、瞬态性能分析和开环系统参数的确定 利用根轨迹可以清楚的看到开环根轨迹增益或其他开环系统参数变化时,闭环系统极点位置及其瞬态性能的改变情况。以二阶系统为例:开环传递函数为)2()(2sssGnk闭环传递函数为2222)(nnnsss共轭极点为:nnjs22,11在s平面上的分布如右图:nnj21闭环极点的张角 为:1222cos,cos(1)()nnn 所以 称为阻尼角。斜线称为等阻尼线。2022-12-10 我们知道闭环二阶系统的主要的性能指标是
5、超调量和调整时间。这些性能指标和闭环极点的关系如下:%100%100%21ctgee)(33为极点实部nst0306090%80604020 的关系如下图和%若闭环极点落在下图中红线包围的区域中,有:3%sctgte和nnj212022-12-10上述结论也可应用于具有主导极点的高阶系统中。如下例:例4-12单位反馈系统的开环传递函数为:若要求闭环单位阶跃响应的最大超调量 ,试确定开环放大系数。)6)(4()(sssksGgk%18%解:首先画出根轨迹如右。由图可以看出:根轨迹与虚轴的交点为+j5,-j5,这时的临界增益 当 时,闭环系统不稳定。240gpk240gkAB2022-12-10下
6、面计算超调量和阻尼角的关系。由于:%,100%1ctge当 时解得:%18%60 这是一个三阶系统,从根轨迹上看出,随着 的增加,主导极点越显著。所以可以用二阶系统的性能指标近似计算。gk在根轨迹图上画两条与实轴夹角为 的直线,与根轨迹交与A、B两点。则A、B两点就是闭环共轭主导极点,这时系统的超调量为18%。通过求A、B两点的坐标,可以确定这时的根轨迹增益 ,进而求得开环放大系数k。60gk046A123j设A点坐标为:则:j360 tg(1)相角条件为:3216412011tgtg(2)2022-12-10由(1),(2)式解得:1.2,2.1共轭主导极点为:。1.22.12,1js计算对
7、应的根轨迹增益。由幅值条件:1)6)(4(1.22.1jsgsssk解得:44gknjjmiiksTsksG11)1()1()(开环传递函数以 的形式表示时,k称为开环放大系数。显然 的关系为:,式中 不计0极点。gkk与jigpzkkjp所以,开环放大系数:83.16444k 由于闭环极点之和等于开环极点之和,所以另一个闭环极点为:6.73 p2022-12-10特别提示特别提示:开环零、极点对根轨迹形状的影响是值得注意的。q 一般说,开环传递函数在s左半平面增加一个极点将使原根轨迹右移。从而降低系统的相对稳定性,增加系统的调整时间。)1()(ssksGgk)2)(1()(sssksGgk2
展开阅读全文