443-不同函数增长的差异课件.pptx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《443-不同函数增长的差异课件.pptx》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 443 不同 函数 增长 差异 课件
- 资源描述:
-
1、4一二一、指数函数与一次函数、二次函数增长的差异比较1.(1)阅读下面材料并回答问题1859年,有人从欧洲带进澳洲几只兔子,由于澳洲有茂盛的牧草,而且没有兔子的天敌,兔子数量不断增加,不到100年,兔子们占领了整个澳大利亚,数量达到75亿只,可爱的兔子变得可恶起来,75亿只兔子吃掉了相当于75亿只羊所吃的牧草,草原的载畜率大大降低,而牛羊是澳大利亚的主要牲口.这使澳大利亚头痛不已.他们采用各种方法消灭这些兔子,直至二十世纪五十年代,科学家采用载液瘤病毒杀死了百分之九十的兔子,澳大利亚人才算松了一口气.想想看,澳大利亚的兔子为什么在不到100年的时间内发展到75亿只?答案:由于兔子在适宜环境下,
2、其繁育的数量呈指数增长趋势,指数增长又称为“爆炸性增长”,因此发展十分迅猛.一二(2)你能借助图象得出在xR时,2x=x,2x=x2的根的个数吗?在(0,+)上存在满足2xx2的x的范围是什么?答案:2x=x无根,2x=x2的根有3个(2正1负);在(0,+)上,存在这样的数x0满足 x0.在(0,+)上,当0 x4时均有2xx2成立.2.填空(1)一般地,指数函数y=ax(a1)与一次函数y=kx(k0)的增长差异都与上述情况类似.即使k的值远远大于a的值,y=ax(a1)的增长速度最终都会大大超过y=kx(k0)的增长速度,即总存在这样的x0(0,+),当xx0时,恒有(2)对于y=ax(
3、a1)与二次函数y=x2也有这样的结论,即存在x0(0,+),使当xx0时总有一二3.做一做(1)下列函数中,增长速度最快的是()A.y=2xB.y=3xC.y=5xD.y=10 x(2)在x(0,+)时,满足2xx2的x的取值范围为.解析:(1)四个选项中的函数都是指数函数,且底数均大于1,D项中底数10最大,则函数y=10 x的增长速度最快.答案:(1)D(2)2xx吗?对于log2xx2结论又如何?答案:结合图象(略)分析可知,log2x=x只有一个根,log2x=x2也只有一个根.存在这样的x0(0,+)使log2x0 x0,同样也存在这样的x0(0,+)使log2x0 成立,但最终随
4、着x取值足够大,log2xx2,log2x1)与一次函数y=kx(k0)在区间(0,+)上都单调递增,但它们的增长速度不同.随着x的增大,一次函数y=kx(k0)保持固定的增长速度,而对数函数y=logax(a1)的增长速度越来越慢.不论a的值比k的值大多少,在一定范围内,logax可能会大于kx,但由于logax的增长慢于kx的增长,因此总会存在一个x0,当xx0时,恒有logax1)与y=x2也存在类似结论,即总会存在一个x0,当xx0时,恒有logaxx2.一二3.做一做(1)下列函数增长速度最快的是()A.y=log2xB.y=log6xC.y=log8xD.y=lg x(2)方程x2
5、-log2x=0的解的个数是()A.1B.2C.3D.0解析:(1)四个选项中的对数函数在区间(0,+)上均是增函数,选项A中y=log2x的底数2最小,则函数y=log2x的增长速度最快.答案:(1)A(2)D探究一探究二探究三规范解答随堂演练研究函数研究函数y=2x,y=x2,y=log2x的增长差异的增长差异例例1在同一坐标系内作出函数y=2x,y=x2,y=log2x的图象并探究它们的增长情况.分析:先比较y=2x和y=x2,再比较y=log2x和y=x2,最后综合判断得出整体规律.解:在同一直角坐标系内作出函数y=2x,y=x2,y=log2x的图象,如图所示,观察归纳可知,当0 x
6、x2log2x.当2x2xlog2x.当x4时,2xx2log2x.探究一探究二探究三规范解答随堂演练反思感悟反思感悟 在(0,+)上,尽管函数y=ax(a1),y=logax(a1)和y=x2都是增函数,但它们的增长速度不同,而且不在同一个“档次”上,随着x的增大,y=ax(a1)的增长速度越来越快,会超过并远远大于y=x2(n0)的增长速度,而y=logax(a1)的增长速度则会越来越慢,总会存在一个x0,当xx0时,有logaxx21)的函数关系分别是f1(x)=x2,f2(x)=4x,f3(x)=log2x,f4(x)=2x.假设他们一直跑下去,最终跑在最前面的人具有的函数关系是()A
7、.f1(x)=x2B.f2(x)=4xC.f3(x)=log2x D.f4(x)=2x解析:当x足够大时,跑在最前面的人具有的函数关系为指数型函数.答案:D探究一探究二探究三规范解答随堂演练根据根据数据信息判断函数类型数据信息判断函数类型例例2在一次数学实验中,运用图形计算器采集到如下一组数据:则x,y的函数关系与下列哪类函数最接近?(其中a,b为待定系数)()探究一探究二探究三规范解答随堂演练解析:散点图如图所示:由散点图可知,此函数图象不是直线,排除A选项;此函数图象是“上升”的,因此该函数为增函数,排除C,D选项,故选B.答案:B探究一探究二探究三规范解答随堂演练反思感悟反思感悟 判断函
展开阅读全文