n811多元函数的极限与连续.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《n811多元函数的极限与连续.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- n811 多元 函数 极限 连续
- 资源描述:
-
1、n811多元函数的极限与连续28.1 多元函数多元函数的极限与连续的极限与连续平面点集平面点集多元函数的概念多元函数的概念多元函数的极限多元函数的极限多元函数的连续性多元函数的连续性小结小结 思考题思考题 作业作业 function of many variables一维数轴上的邻域一维数轴上的邻域:),(axxaUxa a a 回忆回忆一、平面点集一、平面点集4 设设),(000yxP是是xoy平平面面上上的的一一个个点点,是是某某一一正正数数,与与点点),(000yxP距距离离小小于于 的的点点),(yxP的的全全体体,称称为为点点0P的的 邻邻域域,记记为为),(0 PU,(1)邻域)邻
2、域0P),(0 PU|0PPP .)()(|),(2020 yyxxyx(Neighborhood)将邻域去掉中心称之为将邻域去掉中心称之为去心邻域去心邻域.5(2)区域)区域.)(的内点的内点为为则称则称,的某一邻域的某一邻域一个点如果存在点一个点如果存在点是平面上的是平面上的是平面上的一个点集,是平面上的一个点集,设设EPEPUPPE.EE 的内点属于的内点属于EP.为开集为开集则称则称的点都是内点,的点都是内点,如果点集如果点集EE6的边界点的边界点为为),则称),则称可以不属于可以不属于,也,也本身可以属于本身可以属于的点(点的点(点也有不属于也有不属于的点,的点,于于的任一个邻域内既
3、有属的任一个邻域内既有属如果点如果点EPEEPEEPEP 的边界的边界的边界点的全体称为的边界点的全体称为 EE是连通的是连通的开集开集,则称,则称且该折线上的点都属于且该折线上的点都属于连结起来,连结起来,任何两点,都可用折线任何两点,都可用折线内内是开集如果对于是开集如果对于设设DDDD 7连通的开集称为区域或开区域连通的开集称为区域或开区域.41|),(22 yxyx例如,例如,xyo开开区区域域连连同同它它的的边边界界一一起起称称为为闭闭区区域域.41|),(22 yxyx例如,例如,xyo80|),(yxyx有界闭区域;有界闭区域;无界开区域无界开区域xyo例如,例如,则称为无界点集
4、则称为无界点集为有界点集,否为有界点集,否成立,则称成立,则称对一切对一切即即,不超过不超过间的距离间的距离与某一定点与某一定点,使一切点,使一切点如果存在正数如果存在正数对于点集对于点集EEPKAPKAPAEPKE 41|),(22 yxyx9OxyOxyOxy Oxy有界开区域有界开区域有界半开半闭区域有界半开半闭区域有界闭区域有界闭区域无界闭区域无界闭区域10(3)聚点)聚点 设设 E 是是平平面面上上的的一一个个点点集集,P 是是平平面面上上的的一一个个点点,如如果果点点 P 的的任任何何一一个个邻邻域域内内总总有有无无限限多多个个点点属属于于点点集集 E,则则称称 P 为为 E 的的
5、聚聚点点.内点一定是聚点;内点一定是聚点;边界点可能是聚点;边界点可能是聚点;10|),(22 yxyx例例(0,0)既是既是边界点也是聚点边界点也是聚点11 点集点集E的聚点可以属于的聚点可以属于E,也可以不属于,也可以不属于E10|),(22 yxyx例如例如,(0,0)是聚点但不属于集合是聚点但不属于集合1|),(22 yxyx例如例如,边界上的点都是聚点也都属于集合边界上的点都是聚点也都属于集合12(4)n维空间维空间 设设n为为取取定定的的一一个个自自然然数数,我我们们称称n元元数数组组),(21nxxx的的全全体体为为n维维空空间间,而而每每个个n元元数数组组),(21nxxx称称
6、为为n维维空空间间中中的的一一个个点点,数数ix称称为为该该点点的的第第i个个坐坐标标.n维空间的记号为维空间的记号为;nR n维空间中两点间距离公式维空间中两点间距离公式 13),(21nxxxP),(21nyyyQ.)()()(|2222211nnxyxyxyPQ n维空间中邻域、区域等概念维空间中邻域、区域等概念 nRPPPPPU ,|),(00 特殊地当特殊地当 时,便为数轴、平面、时,便为数轴、平面、空间两点间的距离空间两点间的距离3,2,1 n内点、边界点、区域、聚点等概念也可定义内点、边界点、区域、聚点等概念也可定义邻域:邻域:设两点为设两点为14 设设D是平面上的一个点集,如果
7、对于每个点是平面上的一个点集,如果对于每个点DyxP),(,变量,变量z按照一定的法则总有确定的按照一定的法则总有确定的值和它对应,则称值和它对应,则称z是变量是变量yx,的二元函数,记为的二元函数,记为),(yxfz (或记为(或记为)(Pfz ).(5)二元函数的定义)二元函数的定义当当2 n时时,n元元函函数数统统称称为为多多元元函函数数.多元函数中同样有定义域、值域、自变量、多元函数中同样有定义域、值域、自变量、因变量等概念因变量等概念.类似地可定义三元及三元以上函数类似地可定义三元及三元以上函数15多元函数定义域多元函数定义域:定义域为定义域为符合实际意义符合实际意义的自变量取值的全
8、体的自变量取值的全体.实际问题中的函数实际问题中的函数:的自变量取值的全体的自变量取值的全体.纯数学问题的函数纯数学问题的函数:定义域为使定义域为使运算有意义运算有意义16例例1 1 求求 的定义域的定义域222)3arcsin(),(yxyxyxf 解解 013222yxyx 22242yxyx所求定义域为所求定义域为.,42|),(222yxyxyxD 17 1解解Oxy22222.1xxyzxy 练习练习1)1(22 yx定义域是定义域是122 yx且且有界半开半闭区域有界半开半闭区域18一元函数的图形一元函数的图形.)(),(),(的图形的图形函数函数称为称为点集点集xfyDxxfyy
展开阅读全文