3.1《回归分析的基本思想及其初步应用》课件.pptx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《3.1《回归分析的基本思想及其初步应用》课件.pptx》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 回归分析的基本思想及其初步应用 3.1 回归 分析 基本 思想 及其 初步 应用 课件
- 资源描述:
-
1、32 2、现实生活中存在着大量的相关关系。现实生活中存在着大量的相关关系。探索:水稻产量探索:水稻产量y y与施肥量与施肥量x x之间大致有何之间大致有何规律?规律?第2页/共25页10 20 30 40 5010 20 30 40 50500500450450400400350350300300发现:图中各点,大致分布在某条直线附近。发现:图中各点,大致分布在某条直线附近。探索探索2 2:在这些点附近可画直线不止一条,:在这些点附近可画直线不止一条,哪条直线最能代表哪条直线最能代表x x与与y y之间的关系呢?之间的关系呢?x xy y施化肥量施化肥量水稻产量水稻产量施化肥量施化肥量x x
2、15 20 25 30 35 40 45 15 20 25 30 35 40 45水稻产量水稻产量y y 330 345 365 405 445 450 455 330 345 365 405 445 450 455散点图散点图第3页/共25页最小二乘法:最小二乘法:y=bx+a(x,y)(x,y)称为样本点的中心称为样本点的中心。n n(x x-x x)(y y-y y)i ii ii i=1 1b b=n n2 2(x x-x x)i ii i=1 1a a=y y-b bx x.n nn n1 11 1其其 中中 x x=x x,y y=y y.i ii in nn ni i=1 1i
3、i=1 1n niiiii=1i=1n n2 22 2i ii=1i=1x y-nxyx y-nxy=,=,x-nxx-nx第4页/共25页1.2341.2351.230.080.081.23AyxByxyxyx、C、D、1 1、已知回归直线斜率的估计值为、已知回归直线斜率的估计值为1.231.23,样本点的,样本点的中心为(中心为(4,54,5),则回归直线方程为(则回归直线方程为()C练习:练习:第5页/共25页2 2、某考察团对全国、某考察团对全国1010个城市进行职工人均工资水个城市进行职工人均工资水平平x x(千元)与居民人均消费水平(千元)与居民人均消费水平y y(千元)统计调(千
4、元)统计调查,查,y y与与x x具有相关关系,回归方程具有相关关系,回归方程y=0.66x+1.562,若某城市居民人均消费水平为,若某城市居民人均消费水平为7.6757.675(千元),(千元),估计该城市人均消费额占人均工资收入的百分比约估计该城市人均消费额占人均工资收入的百分比约为为()A A83%B83%B72%72%C C67%67%D D66%66%A第6页/共25页问题问题2:对于线性相关的两个变量用什么方法来刻:对于线性相关的两个变量用什么方法来刻划之间的关系呢?划之间的关系呢?2、最小二乘估计、最小二乘估计最小二乘估计下的线性回归方程:最小二乘估计下的线性回归方程:ybxa
5、121()()()niiiniixXyYbXX aYbXnxxi其中:nyyi心。回归直线过样本点的中)称为样本点的中心,(yx心。回归直线过样本点的中)称为样本点的中心,(yx心。回归直线过样本点的中)称为样本点的中心,(yx心。回归直线过样本点的中)称为样本点的中心,(yx心。回归直线过样本点的中)称为样本点的中心,(yx心。回归直线过样本点的中)称为样本点的中心,(yxnxxi其中:nxxi其中:nyyinyyi第7页/共25页例例1 从某大学中随机选取从某大学中随机选取8名女大学生,其身高和体重数据如表名女大学生,其身高和体重数据如表1-1所示。所示。43616454505748体重/
6、kg155165175170157165165身高/cm7654321编号求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为高为172cm的女大学生的体重。的女大学生的体重。问题一:结合例问题一:结合例1得出线性回归模型及随机误差。并且得出线性回归模型及随机误差。并且区区分函数模型和回归模型。分函数模型和回归模型。解:解:1、选取身高为自变量、选取身高为自变量x,体重为因变量,体重为因变量y,作散点图:,作散点图:第8页/共25页2.回归方程:回归方程:172.85849.0 xy学学身身 高高 1 17 72 2c c
7、m m女女 大大生生 体体 重重y y=0 0.8 84 49 91 17 72 2-8 85 5.7 71 12 2=6 60 0.3 31 16 6(k kg g)探究:身高为172cm的女大学生的体重一定是60.316kg吗?如果不是,你能解析一下原因吗?第9页/共25页由于所有的样本点不共线,而只是散布在某一直线的附近,由于所有的样本点不共线,而只是散布在某一直线的附近,所以身高和体重的关系可以用所以身高和体重的关系可以用线性回归模型线性回归模型来表示:来表示:注:随机误差注:随机误差e包含预报体重不能由身高的线性函包含预报体重不能由身高的线性函数解释的所有部分。数解释的所有部分。2,
8、:0,ybxaeE eD e线性回归模型ybxaey其中和为模型的,是 与之间的误差。通常称为未知参数随机误差。ybxaey其中和为模型的,是 与之间的误差。通常称为未知参数随机误差。ybxaey其中和为模型的,是 与之间的误差。通常称为未知参数随机误差。ybxaey其中和为模型的,是 与之间的误差。通常称为未知参数随机误差。2,:0,ybxaeE eD e线性回归模型第10页/共25页函数模型与函数模型与“回归模型回归模型”的关系的关系函数模型:因变量函数模型:因变量y完全由自变量完全由自变量x确定确定回归模型:回归模型:预报变量预报变量y完全由解释变量完全由解释变量x和随机误差和随机误差e
9、确定确定第11页/共25页问题二:在线性回归模型中,问题二:在线性回归模型中,e是用是用bx+a预报真实值预报真实值y的随机误差,它是一个不可观测的量,那么应如何研的随机误差,它是一个不可观测的量,那么应如何研究随机误差呢?究随机误差呢?,1,2,.,1,2,.iiiiiiiiybxa ineyyybxa ine1122nniii残差:一般的对于样本点(x,y),(x,y),.,(x,y),它们的随机误差为e其估计值为称为相应于点(x,y)的残差。结合例结合例1除了身高影响体重外的其他因素是不可测量的,不能希除了身高影响体重外的其他因素是不可测量的,不能希望有某种方法获取随机误差的值以提高预报
10、变量的估计精度,但望有某种方法获取随机误差的值以提高预报变量的估计精度,但却可以估计预报变量观测值中所包含的随机误差,这对我们查找却可以估计预报变量观测值中所包含的随机误差,这对我们查找样本数据中的错误和模型的评价极为有用,因此在此我们引入残样本数据中的错误和模型的评价极为有用,因此在此我们引入残差概念。差概念。,1,2,.,1,2,.iiiiiiiiybxa ineyyybxa ine1122nniii残差:一般的对于样本点(x,y),(x,y),.,(x,y),它们的随机误差为e其估计值为称为相应于点(x,y)的残差。,1,2,.,1,2,.iiiiiiiiybxa ineyyybxa i
11、ne1122nniii残差:一般的对于样本点(x,y),(x,y),.,(x,y),它们的随机误差为e其估计值为称为相应于点(x,y)的残差。第12页/共25页问题三:如何发现数据中的错误?如何衡量随机模型的问题三:如何发现数据中的错误?如何衡量随机模型的拟合效果?拟合效果?(1)我们可以通过分析发现原始数据中的可疑数据,我们可以通过分析发现原始数据中的可疑数据,判断建立模型的拟合效果。判断建立模型的拟合效果。iiieybxa(1)计算(i=1,2,.n)残差分析(2)画残差图(1)查找异常样本数据(2)残差点分布在以O为中心的水平(3)分析残差图 带状区域,并沿水平方向散点的 分布规律相同。
展开阅读全文