《23垂径定理》课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《《23垂径定理》课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 23垂径定理 23 定理 课件
- 资源描述:
-
1、垂径定理垂径定理圆的相关概念圆的相关概念l圆上任意两点间的部分叫做圆上任意两点间的部分叫做圆弧圆弧,简称简称弧弧.l直径直径将圆分成两部分将圆分成两部分,每一部分都叫每一部分都叫做半圆做半圆(如弧如弧ABC).n连接圆上任意两点间的线段叫做连接圆上任意两点间的线段叫做弦弦(如弦如弦AB).On经过圆心的弦叫做经过圆心的弦叫做直径直径(如直径如直径AC).ABn以以A,B两点为端点的两点为端点的弧弧.记作记作 ,读作读作“弧弧AB”.ABn小于半圆的小于半圆的弧弧叫做劣弧叫做劣弧,如记作如记作 (用用两个字母两个字母).AmBn大于半圆的大于半圆的弧弧叫做优弧叫做优弧,如记作如记作 (用三个字母
2、用三个字母).ABCmDl圆是轴对称图形圆是轴对称图形.圆的对称轴是圆的对称轴是任意一条经过圆心的直线任意一条经过圆心的直线,它有无它有无数条对称轴数条对称轴.O可利用折叠的方法即可解决上述问题可利用折叠的方法即可解决上述问题.赵州石拱桥 13001300多年前多年前,我国隋朝建造的赵州石拱桥我国隋朝建造的赵州石拱桥(如图如图)的桥拱是的桥拱是圆弧形圆弧形,它的它的跨度跨度(弧所对的弦的长弧所对的弦的长)为为37.4m,37.4m,拱高拱高(弧的中弧的中点到弦的距离点到弦的距离,也叫弓形高也叫弓形高)为为7.2m,7.2m,求桥拱的半径求桥拱的半径(精确到精确到0.1m).0.1m).如图,如
3、图,AB是是 O的一条弦,做直径的一条弦,做直径CD,使,使CDAB,垂足为,垂足为E(1)圆是轴对称图形吗?如果是,它的对称轴是什么?)圆是轴对称图形吗?如果是,它的对称轴是什么?(2)你能发现图中有那些相等的线段和弧?为什么?)你能发现图中有那些相等的线段和弧?为什么?OABCDE活活 动动 一一(1)是轴对称图形直径)是轴对称图形直径CD所所在的直线是它的对称轴在的直线是它的对称轴(2)线段:线段:AE=BE弧弧:AC=BC,AD=BD把圆沿着直径把圆沿着直径CD折叠时,折叠时,CD两侧的两个两侧的两个半圆重合,点半圆重合,点A与点与点B重合,重合,AE与与BE重合,重合,AC,AD分别
4、与分别与BC、BD重合重合即直径即直径CD垂直于弦垂直于弦AB,平分,平分弦弦AB,并且平分并且平分AB及及ACBOABCDE垂径定理:垂径定理:垂直于弦的直径平分弦,并且平分垂直于弦的直径平分弦,并且平分弦所对的两条弧弦所对的两条弧垂径定理垂径定理l如图如图,理由是理由是:l连接连接OA,OB,OA,OB,OABCDM则则OA=OB.在在RtOAM和和RtOBM中中,OA=OB,OM=OM,RtOAM RtOBM.AM=BM.点点A和点和点B关于关于CD对称对称.O关于直径关于直径CD对称对称,当圆沿着直径当圆沿着直径CD对折时对折时,点点A与点与点B重合重合,AC和和BC重合重合,AD和和
5、BD重合重合.AC=BC,AD=BD.CAEBO.D总结:总结:CD为为 O的直径的直径CDAB 条件条件结论结论E EO OA AB BD DC CE EA AB BC CD DE EO OA AB BD DC CE EO OA AB BC CE EO OC CD DA AB B 练习练习1O OB BA AE ED在下列图形,符合垂径定理的条件吗?在下列图形,符合垂径定理的条件吗?O OABCDEABDC条件条件CDCD为直径为直径结论结论AC=BCAD=BDCDABCDABCDABCDABAE=BE平分弦平分弦 的直径垂直于弦,并且平分的直径垂直于弦,并且平分弦所对的两条弧弦所对的两条弧
6、(不是直径不是直径)垂径定理的推论垂径定理的推论1:1:CDABCDAB吗?吗?(E)(E)CDAB,垂径定理的垂径定理的逆定理逆定理lAB是是 O的一条弦的一条弦,且且AM=BM.l你能发现图中有哪些等量关系你能发现图中有哪些等量关系?与同伴说说与同伴说说你的想法和理由你的想法和理由.n过点过点M作直径作直径CD.On右图是轴对称图形吗右图是轴对称图形吗?如果是如果是,其对称轴是什么其对称轴是什么?CDn由由 CD是直径是直径 AM=BM可推得可推得 AC=BC,AD=BD.MAB平分平分弦(不是直径)的弦(不是直径)的直径直径垂直于弦垂直于弦,并且平并且平 分弦所对的两条弧分弦所对的两条弧
7、.不是直径不是直径“知二推三知二推三”(1)垂直于弦垂直于弦 (2)过圆心过圆心 (3)平分弦平分弦 (4)平分弦所对的优弧平分弦所对的优弧 (5)平分弦所对的劣弧平分弦所对的劣弧注意注意:当具备了当具备了(1)(3)(1)(3)时时,应对另一应对另一 条弦增加条弦增加”不是直径不是直径”的限制的限制.E E例例1 如图,已知在如图,已知在 O中,中,弦弦AB的长为的长为8cm,圆心,圆心O到到AB的距离为的距离为3cm,求,求 O的的半径。半径。讲解讲解A AB B.O O垂径定理的应用垂径定理的应用解:连接OA,作OE2+OE2=5变式:变式:如图,已知在如图,已知在 O中,中,弦弦AB的
8、长为的长为8cm,CD是是 O的直的直径,径,CDB垂足为垂足为E,DE2cm,求求 O的半径。的半径。EA AB B.O OCDcm32cm32 8cm1 1半径半径为为4cm4cm的的O O中,弦中,弦AB=4cmAB=4cm,那么圆心那么圆心O O到弦到弦ABAB的距离是的距离是 。2 2O O的的直径直径为为10cm10cm,圆心,圆心O O到弦到弦ABAB的的 距离为距离为3cm3cm,则弦,则弦ABAB的长是的长是 。3 3半径半径为为2cm2cm的圆中,过半径中点且的圆中,过半径中点且 垂直于这条半径的弦长是垂直于这条半径的弦长是 。练习练习 1A AB BO OE EA AB
9、BO OE EO OA AB BE E1.1.如图如图,在在O O中中,弦弦ABAB的长为的长为8cm,8cm,圆心到圆心到ABAB的距离为的距离为3cm,3cm,则则O O的半径为的半径为 .练习练习 2:ABOC5cm342.2.弓形的弦长弓形的弦长ABAB为为24cm24cm,弓形的高,弓形的高CDCD为为8cm8cm,则这弓形所在圆的半径为,则这弓形所在圆的半径为.13cm D C A B O(1)(1)题题(2)(2)题题128方法归纳方法归纳:1.垂径定理垂径定理经常和经常和勾股定理勾股定理结合使用。结合使用。2.解决有关弦的问题时,经常解决有关弦的问题时,经常(1)连结半径连结半
展开阅读全文