abaqus第九讲:显式动力学问题.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《abaqus第九讲:显式动力学问题.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- abaqus 第九 动力学 问题
- 资源描述:
-
1、abaqus第九讲:显式动力学问题显式动力学方法显式动力学过程概述 显式动力学求解器与隐式求解器,比如ABAQUS/Standard,是互为补充的。从用户的角度出发,隐式与显式方法显著的区别为:显式方法需要小的时间增量。只与模型的最高自然频率相关。与载荷类型和载荷持续时间无关。一般的,增量步的数量级为10,000到1,000,000个增量,但是每个增量步内的计算费用相对较小。显式动力学过程概述 应力波的传播应力波传播的例子说明了显式动力学方法的求解过程:没有迭代,或求解线性方程组。考虑应力波沿着三个杆单元传播问题。在时间增加的过程中,研究杆的状态。质量被集中到节点。杆的初始构型,自由端有一个集
2、中力P显式动力学过程概述第一个增量步结束时的构型1110111111111elelelelelelelEddtdludtuuMPu 显式动力学过程概述第三个增量步开始时杆的构型第二个增量步开始时杆的构型dtuuMFudtuuuMFPueloldel22212111111 11111elelelelEddtdluuelelel11121显式时间积分 ABAQUS/Explicit应用中心差分方法对运动方程进行显示的时间积分,应用一个增量步的动力学条件计算下一个增量步的动力学条件。在增量步开始时,程序求解动力学平衡方程,表示为用节点质量矩阵M乘以节点加速度等于节点的合力(在所施加的外力P与单元内力
3、I之间的差值):Mu=P-I在当前增量步开始时(t时刻),计算加速度为:1()()|()()|ttuMPI由于显式算法总是采用一个对角的、或者集中的质量矩阵,所以求解加速度并不复杂,不必同时求解联立方程。任何节点的加速度是完全取决于节点质量和作用在节点上的合力,使得节点计算的成本非常低。对加速度在时间上进行积分采用中心差分方法,在计算速度的变化时假定加速度为常数。应用这个速度的变化值加上前一个增量步中点的速度来确定当前增量步中点的速度:()()()()()22(|)|2ttttttttttuuu速度对时间的积分并加上在增量步开始时的位移以确定增量步结束时的位移:()()()()2|tttttt
4、ttuuu 这样,在增量步开始时提供了满足动力学平衡条件的加速度。得到了加速度,在时间上“显式地”前推速度和位移。所谓“显式”是指在增量步结束时的状态仅依赖于该增量步开始时的位移、速度和加速度。这种方法精确地积分常值的加速度。为了使该方法产生精确的结果,时间增量必须相当小,这样在增量步中加速度几乎为常数。由于时间增量步必须很小,一个典型的分析需要成千上万个增量步。幸运的是,因为不必同时求解联立方程组,所以每一个增量步的计算成本很低。大部分的计算成本消耗在单元的计算上,以此确定作用在节点上的单元内力。单元的计算包括确定单元应变和应用材料本构关系(单元刚度)确定单元应力,从而进一步地计算内力。显式
5、动力学求解过程总结:1.节点计算 a.动力学平衡方程 b.对时间显式积分 2.单元计算 a.根据应变速率 ,计算单元应变增量 b.根据本构关系计算应力 c.集成节点内力3.设置时间 t 为 ,返回到步骤1。1()()()()()tttuMPI()()()()22()2tttttttttt uuu()()()()2tttttttt uuu()()(,)tttfdtt d()ttI 显式时间积分方法的优越性1.显式方法特别适用于求解需要分成许多小的时间增量来达到高精度的高速动力学时间,诸如冲击,碰撞,爆破问题等;2.接触问题和其他一些极度非连续事件在显式方法中很容易表达清楚并且能够一个节点一个节点
展开阅读全文