221-不等式及其性质课件.pptx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《221-不等式及其性质课件.pptx》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 221 不等式 及其 性质 课件
- 资源描述:
-
1、2一二知识点一、不等关系与不等式填空:(1)不等式中自然语言与符号语言之间的转换.(2)不等式的定义:含有不等号的式子.三四一二知识点二、实数大小的比较1.思考怎样比较a2+b2与2ab的大小关系?提示:(作差法)a2+b2-2ab=(a-b)20,a2+b22ab.三四一二2.填空:(1)数轴上的两点A,B的位置关系与其对应实数a,b的大小关系.数轴上的任意两点中,右边点对应的实数比左边点对应的实数大.数轴上点的位置与实数大小的关系(表示实数a和b的两个点分别为A和B),如下:三四一二(2)比较两个实数的大小.三四一二答案:C 三四一二三四知识点三、不等式的性质1.不等式的性质(1)性质1:
2、如果ab,那么a+cb+c;(2)性质2:如果ab,c0,那么acbc;(3)性质3:如果ab,c0,那么acb,bc,那么ac.(5)性质5:abbc,则ac-b;(2)推论2:如果ab,cd,那么a+cb+d;(3)推论3:如果ab0,cd0,那么acbd;(4)推论4:如果ab0,那么anbn(nN,n1);一二三四3.利用不等式性质应注意哪些问题?提示:在使用不等式时,一定要弄清不等式(组)成立的前提条件.不可强化或弱化成立的条件.如“同向不等式”才可相加、“同向且两边同正的不等式”才可相乘;可乘性中的“c的符号”等都需要注意.4.做一做已知ab,可以推出()解析:c20,ab,ac2
3、bc2.答案:B一二三四5.做一做判断下列说法是否正确,正确的在后面的括号里打“”,错误的打“”.(1)若ab,cb-d.()(2)若ab,则1ab0,cd0,则adbc.()(4)已知ab,ef,c0,则f-ace-bc.()答案:(1)(2)(3)(4)一二三四知识点四、直接证明与间接证明1.直接证明(1)综合法:一般地,利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法.用P表示已知条件、已有的定义、公理、定理等,Q表示所要证明的结论,则综合法可用框图表示为:PQ1Q1Q2Q2Q3QnQ一二三四(2)分析法:一般地,从要证
4、明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止,这种证明方法叫做分析法.用Q表示要证明的结论,则分析法可用框图表示为:QP1P1P2P2P3得到一个明显成立的条件2.间接证明反证法:一般地,假设原命题不成立(即在原命题的条件下,结论不成立),经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立,这样的证明方法叫做反证法.一二三四答案:C 探究一探究二探究三探究四思维辨析应用不等式的性质证明应用不等式的性质证明不等式不等式 当堂检测探究一探究二探究三探究四思维辨析反思感悟证明不等式的解题策略1.利
5、用不等式的性质及其推论可以证明一些不等式.解决此类问题一定要在理解的基础上,记准、记熟不等式的性质并注意在解题中灵活准确地加以应用.2.应用不等式的性质进行推导时,应注意紧扣不等式的性质成立的条件,且不可省略条件或跳步推导,更不能随意构造性质与法则.3.除了熟练掌握不等式的性质外,还应掌握一些常用的证明方法.如作差比较法、作商比较法、分析法等.当堂检测探究一探究二探究三探究四思维辨析当堂检测探究一探究二探究三探究四思维辨析利用不等式的性质求范围利用不等式的性质求范围例2(1)已知-6a8,2b3,则2a+b的取值范围是,a-b的取值范围是.(2)已知函数f(x)=ax2-c,且-4f(1)-1
6、,-1f(2)5,求f(3)的取值范围.(1)答案:(-10,19)(-9,6)当堂检测探究一探究二探究三探究四思维辨析反思感悟利用不等式的性质求代数式的范围要注意的问题1.恰当设计解题步骤,合理利用不等式的性质.2.运用不等式的性质时要切实注意不等式性质的前提条件,切不可用似乎是很显然的理由,代替不等式范围的求解.当堂检测探究一探究二探究三探究四思维辨析延伸探究延伸探究在本例2(1)条件下,求ab和 的取值范围.解:(1)因为-6a8,2b3,所以当0a8时,0ab24,当-6a0时,0-a6,所以0-ab18,所以-18ab0,由知-18ab24.(2)因为-6a8,2b0,求证:3a3+
展开阅读全文