数论中若干问题和进展课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《数论中若干问题和进展课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数论 若干问题 进展 课件
- 资源描述:
-
1、数论中的若干问题和进展数论中的若干问题和进展徐飞一一.概述概述Peano公理:自然数(正整数)和零。减法:整数 Z。除法:有理数 Q。极限:实数 R。(,2,)求解代数方程 :复数 C。一一.概述概述数论大致分为两类问题:1)素数问题。如Riemann猜想,Goldbach猜想等。2)整系数多项式方程的整数解。如Fermat猜想,BSD猜想等。二二.素数素数 如果正整数m整除正整数n,称m是n的一个因子。如果正整数p的因子只有1和p,那么p称为素数。如 2,3,5,7,11,13,17,19 等等。二二.素数素数 算术基本定理:任何一个正整数都可表示为素数的乘积。不考虑乘积秩序,表达式唯一。如
2、:4=2x2,6=2x3,12=2x2x3 等等。二二.素数素数定理(Euclid):素数有无限多。证法一:如果素数只有有限多个,记为那么根据算术基本定理,的素数因子就一定不是上述的素数,矛盾!二二.素数素数证法二(Riemann):根据算术基本定理,其中s是大于1的实数。如果素数只有有限多,那么无论s取什么值等式右边都是有限值,而等式左边当s=1时是发散的。矛盾!二二.素数素数利用证法二可以证明:定理(Dirichlet):等差级数 a,a+d,a+2d,a+nd,中如果a和d互素,那么该等差级数中会有无限多个素数。二二.素数素数Riemann zeta 函数满足函数方程s1-s。(Riem
3、ann猜想):Riemann zeta函数的非平凡零点在实部为1/2的竖直线。二二.素数素数 如果p和p+2都是素数,称(p,p+2)为孪生素数。如(3,5);(5,7);(11,13);(17,19)等等。猜想:孪生素数有无限多对?二.素数 Green-Tao定理:对任意正整数n,存在长度为n且每一项都是素数的等差级数。例如:3,7,11 (n=3)5,11,17,23,29 (n=5)二.素数目前用计算机明确找到最长的素数等差级数是 6171054912832631+366384x223092870 xk:k=0,1,2,24 二.素数猜想1:(Goldbach 猜想)任意大于2的偶数都可
4、写成两个素数的和。猜想2:(Schinzel 猜想):首项系数为正的整系数不可约多项式,若没有固定正因子,则存在无限多个素数可表示为该多项式的形式。二.素数特例:(Landau 猜想)是否存在无限多素数可写为 x+1的形式?类似地,可以有多个变元和若干个多项式的Schinzel 猜想。二.素数Dirichlet 定理:对任给定的非退化本原二元二次型,都存在无限多个素数可表示为该二元二次型的形式。Iwaniec 将这个结果推广到二元二次非退化本原多项式情形。二.素数Friedlander-Iwaniec(1998)定理:存在无限多个素数可以表示为 x +y 的形式。Heath-Brown(200
展开阅读全文