高等数学-第十二章-常微分方程-习题课课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《高等数学-第十二章-常微分方程-习题课课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高等数学 第十二 微分方程 习题 课件
- 资源描述:
-
1、1第十二章第十二章 常微分方程常微分方程 习题课习题课:.一阶微分方程一可分离变量方程.1)()(yxdxdy dxxydy)()(齐次方程.2 xyfdxdydxduxudxdyuxyxyu ,则令),(ufdxduxu ,)(uufdxdux .)(xdxuufdu2线性方程.3)()(xQyxpy cdxexQeydxxpdxxp)()()(公式伯努利方程.4),()()(10 nyxQyxpyn)()(.xQyxpyynn 1解yynzyznn )(,11则令)()()()(xQnzxpnz 11全微分方程.5xQyPdyyxQdxyxP 且0),(),(),(),(),(),(),(
2、yxyxdyyxQdxyxPyxu00.),(为隐式通解cyxu?”“积分因子寻找3:是一种全微分方程可分离变量方程实际上.)()(01dyydxx .是分是合要灵活运用与 dxdy)(.xfdxydnn 1:.可降阶方程二.次直接积分 n:.残缺二阶方程2.),(xyxyyyF或中不显含0 ),().xyfy 1pyxpy 则令),(.)(),(的一阶方程xpxpfp :推广)()(,1nnyxfy)(),()()(xpyxpynn 则令14),().yyfy 2ppyypy 则令,)(.)(),(的一阶方程ypypfpp .然后好求解判别一阶方程类型,:一阶方程的常见形式),(yxfdxd
3、y 或0 dyyxQdxyxP),(),(?:式之一将待解方程化成下列形思考;可分离变量;齐次方程;线性方程;伯努利方程.全微分方程?积分因子?变量代换5yexdydx2111)(.例1112)(.xexdydy解可分离变量112 xdxedyycxexy 21)(02dyxyxdxxyyxcoscos.例xyxxyyxdxdycoscos.解xyxyxycoscos 1齐次方程xdudxudxdyxuyxyu ,则令,coscosuuuxdudxu1uuuuuxdudxcoscoscos11 6,cosuxdudx1,cosxdxduu.sinxycex 13 xyxdydxsin)(cos
4、.例xyxxdydsec)(tan.解一阶线性方程cdxexeydxxdxxtantanseccdxexexxcoslncoslnseccdxxx2seccoscxxtancosxcxcossin 7334yxxyxdyd .例)(.伯努利方程解323xyxxdydy xdydyzyz322 则令,322xxzz dxexcezxdxxdx2322dxexcexx22321222xecexx122 xcexyyyeeeyDD011 dxexx 232 dyyeyxyxdxdy22)(1 yey122xex21y)(隐式通解8053223 dyyyxdxxyx)()(.例,.3223yyxQxy
5、xP 解,xQxyyP 2.原方程是全微分方程 ),(),(),(yxQdyPdxyxu00 ),(),()()(yxdyyyxdxxyx003223),(00),(0 x),(yx yxdyyyxdxx032030)()(4224412141yyxx cyyxx 4224412141.为原方程的隐式通解9.)()(.又解例053223 dyyyxdxxyx3223yyxxyxxdyd 33221xyxyxy 齐次方程.,xdudxuxdyduxyxyu 则设,321uuuxdudxu ,uuuuuuxdudx2342121 ,xxduudu 21,lnln)ln(cxu 2121,lnln)
6、ln(cxu2212 ,)(cux2122 .222cyx10053223 dyyyxdxxyx)()(.例02222 dyyxydxyxx)()(,事实上022 )()(ydyxdxyx)(1022 yx)(20 ydyxdx或cyx 2221212)()(3222cyx 或.)()(中式已包含在此隐式解 3111:,要熟悉几个微分算式寻找积分因子)()(1xdyydxyxd)(42xydxxdyxyd)(52yxdyydxyxd)(ln6xyydxxdyxyd)(arctan722yxydxxdyxyd)()(ln2xyxdyydxxyd)(3122yxxdyydxxyd120262 dx
7、yxydyxdx.例022 dxyyxdxdx)(.解dxyyxdxdx22 )(222xdxyyxdxdx )(xydxd2)(ln.ln为原方程的隐式通解cxyx 213,)()sin(.与路径无关已知例Ldyxxfdxxxyx1.)(,)(xffxf求是可微函数且02:杂例.)()(,sin2xxfxfxxQxxyP ,)(,sin.xxfQxxyxP 解,)()(sin2xxfxfxxx ,sin)()(xxxfxxf21 14dxexxcexfdxxdxx121sin)(,sin)()(xxxfxxf21 dxxxcxsinxxxxDDsincossin 011xxxcxsincos
8、,102002cf 由.1 c.cossin)(xxxxxxf 215:)(.满足可微函数例xf2)()()()()(yfxfyfxfyxf 1.)(,)()(xfrrf求已知且 0)()()()()()()(.xfxfxfxfxfxfxxf 1解)()()()()(xfxfxfxfxf 12xxfxxfxfx )()(lim)(0)()()()(limxfxfxfxxfx 1120)()()()()(0010000fffff )()(唯一00 f)()()(lim)()(limxfxfxfxfxfxx 110020016)()()(lim)()(lim)(xfxfxfxfxfxfxx 110
9、0200)()(xff210)(xfr21,)()(rxfxf 21,)()(dxrdxxfxf21,)(arctancxrxf ,)(arctancf 000 c,)(arctanxrxf.)tan()(xrxf#17dxxyxydxxdy)(.233例xdxyxyxd)()(.122 解,yxu 令,)(xdxudu12 则,xdxudu 12,xdxudu12cxuu 2211121lncxuu2112 ln)(.cxececxyxy222211 隐式通解181423 )()(.xyxxyxxdyd例,.1 xdydxdzdxyz则令解,023 zxzxxdzd23zxxzz 的伯努利方
展开阅读全文