书签 分享 收藏 举报 版权申诉 / 534
上传文档赚钱

类型电子教案-《数字电子技术(第二版)》-李中发课件.ppt

  • 上传人(卖家):晟晟文业
  • 文档编号:4429291
  • 上传时间:2022-12-08
  • 格式:PPT
  • 页数:534
  • 大小:14.07MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《电子教案-《数字电子技术(第二版)》-李中发课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    数字电子技术第二版 电子 教案 数字 电子技术 第二 李中发 课件
    资源描述:

    1、数字电子技术数字电子技术(第二版)(第二版)第第第第第第1 1 1章章章章章章 逻辑代数逻辑代数逻辑代数逻辑代数逻辑代数逻辑代数学习要点学习要点l了解数字电路的特点及分类,数制与编码的概念,各种数制之间的转换。l了解不同类型逻辑表达式的相互转换以及最简与或表达式。l掌握逻辑代数的基本运算法则、基本公式、基本定理和化简方法。l能够熟练地运用真值表、逻辑表达式、卡诺图、波形图和逻辑图表示逻辑函数。第第第第第第1 1 1章章章章章章 逻辑代数逻辑代数逻辑代数逻辑代数逻辑代数逻辑代数1.1 概述概述1.1.1 数字信号与数字电路数字信号与数字电路模拟信号:在时间上和数值上连续的信号。数字信号:在时间上

    2、和数值上不连续的(即离散的)信号。uu模拟信号波形数字信号波形tt对模拟信号进行传输、处理的电子线路称为模拟电路。对数字信号进行传输、处理的电子线路称为数字电路。1.1.2 数字电路的的特点与分类数字电路的的特点与分类(1)工作信号是二进制的数字信号,在时间上和数值上是离散的(不连续),反映在电路上就是低电平和高电平两种状态(即0和1两个逻辑值)。(2)在数字电路中,研究的主要问题是电路的逻辑功能,即输入信号的状态和输出信号的状态之间的关系。(3)对组成数字电路的元器件的精度要求不高,只要在工作时能够可靠地区分0和1两种状态即可。1、数字电路的特点、数字电路的特点2、数字电路的分类、数字电路的

    3、分类(2)按所用器件制作工艺的不同:数字电路可分为双极型(TTL型)和单极型(MOS型)两类。(3)按照电路的结构和工作原理的不同:数字电路可分为组合逻辑电路和时序逻辑电路两类。组合逻辑电路没有记忆功能,其输出信号只与当时的输入信号有关,而与电路以前的状态无关。时序逻辑电路具有记忆功能,其输出信号不仅和当时的输入信号有关,而且与电路以前的状态有关。(1)按集成度分类:数字电路可分为小规模(SSI,每片数十器件)、中规模(MSI,每片数百器件)、大规模(LSI,每片数千器件)和超大规模(VLSI,每片器件数目大于1万)数字集成电路。集成电路从应用的角度又可分为通用型和专用型两大类型。1.2 数制

    4、与编码数制与编码(1)进位制:表示数时,仅用一位数码往往不够用,必须用进位计数的方法组成多位数码。多位数码每一位的构成以及从低位到高位的进位规则称为进位计数制,简称进位制。1.2.1 数制数制(2)基 数:进位制的基数,就是在该进位制中可能用到的数码个数。(3)位 权(位的权数):在某一进位制的数中,每一位的大小都对应着该位上的数码乘上一个固定的数,这个固定的数就是这一位的权数。权数是一个幂。数码为:09;基数是10。运算规律:逢十进一,即:9110。十进制数的权展开式:1、十进制、十进制103、102、101、100称为十进制的权。各数位的权是10的幂。同样的数码在不同的数位上代表的数值不同

    5、。任意一个十进制数都可以表示为各个数位上的数码与其对应的权的乘积之和,称权展开式。即:(5555)105103 510251015100又如:(209.04)10 2102 0101910001014 1022、二进制、二进制数码为:0、1;基数是2。运算规律:逢二进一,即:1110。二进制数的权展开式:如:(101.01)2 122 0211200211 22(5.25)10加法规则:0+0=0,0+1=1,1+0=1,1+1=10乘法规则:0.0=0,0.1=0,1.0=0,1.1=1运算运算规则规则各数位的权是的幂各数位的权是的幂二进制数只有0和1两个数码,它的每一位都可以用电子元件来实

    6、现,且运算规则简单,相应的运算电路也容易实现。数码为:07;基数是8。运算规律:逢八进一,即:7110。八进制数的权展开式:如:(207.04)10 282 0817800814 82 (135.0625)103、八进制、八进制4、十六进制、十六进制数码为:09、AF;基数是16。运算规律:逢十六进一,即:F110。十六进制数的权展开式:如:(D8.A)16 13161 816010 161(216.625)10各数位的权是各数位的权是8的幂的幂各数位的权是各数位的权是16的幂的幂结论结论一般地,N进制需要用到N个数码,基数是N;运算规律为逢N进一。如果一个N进制数M包含位整数和位小数,即 (

    7、an-1 an-2 a1 a0 a1 a2 am)2则该数的权展开式为:(M)2 an-1Nn-1 an-2 Nn-2 a1N1 a0 N0a1 N-1a2 N-2 amN-m 由权展开式很容易将一个N进制数转换为十进制数。几几种种进进制制数数之之间间的的对对应应关关系系十进制数二进制数八进制数十六进制数012345678910111213141500000001001000110100010101100111100010011010101111001101111011110123456710111213141516170123456789ABCDEF1.2.2 数制转换数制转换(1)二进制数

    8、转换为八进制数:将二进制数由小数点开始,整数部分向左,小数部分向右,每3位分成一组,不够3位补零,则每组二进制数便是一位八进制数。将N进制数按权展开,即可以转换为十进制数。1、二进制数与八进制数的相互转换、二进制数与八进制数的相互转换1 1 0 1 0 1 0.0 10 00 (152.2)8(2)八进制数转换为二进制数:将每位八进制数用3位二进制数表示。=011 111 100.010 110(374.26)82、二进制数与十六进制数的相互转换、二进制数与十六进制数的相互转换1 1 1 0 1 0 1 0 0.0 1 10 0 00 (1D4.6)16=1010 1111 0100.0111

    9、 0110(AF4.76)16 二进制数与十六进制数的相互转换,按照每4位二进制数对应于一位十六进制数进行转换。3、十进制数转换为二进制数、十进制数转换为二进制数采用的方法 :将整数部分和小数部分分别进行转换。整数部分采用基数连除法,小数部分 采用基数连乘法。转换后再合并。2 44 余数 低位 2 22 0=K0 2 11 0=K1 2 5 1=K2 2 2 1=K3 2 1 0=K4 0 1=K5 高位 0.375 2 整数 高位 0.750 0=K1 0.750 2 1.500 1=K2 0.500 2 1.000 1=K3 低位整数部分采用基数连除法,先得到的余数为低位,后得到的余数为高

    10、位。小数部分采用基数连乘法,先得到的整数为高位,后得到的整数为低位。所以:(44.375)10(101100.011)2采用基数连除、连乘法,可将十进制数转换为任意的N进制数。用一定位数的二进制数来表示十进制数码、字母、符号等信息称为编码。用以表示十进制数码、字母、符号等信息的一定位数的二进制数称为代码。1.2.3 编码编码 数字系统只能识别0和1,怎样才能表示更多的数码、符号、字母呢?用编码可以解决此问题。二-十进制代码:用4位二进制数b3b2b1b0来表示十进制数中的 0 9 十个数码。简称BCD码。2421码的权值依次为2、4、2、1;余3码由8421码加0011得到;格雷码是一种循环码

    11、,其特点是任何相邻的两个码字,仅有一位代码不同,其它位相同。用四位自然二进制码中的前十个码字来表示十进制数码,因各位的权值依次为8、4、2、1,故称8421 BCD码。常常用用B BC CD D码码十进制数 8421码 余3码 格雷码 2421码5421码0123456789000000010010001101000101011001111000100100110100010101100111100010011010101111000000000100110010011001110101010011001101000000010010001101001011110011011110111100

    12、00000100100011010010001001101010111100权8421242154211 1.3 .3 逻辑代数逻辑代数的基本概念的基本概念事物往往存在两种对立的状态,在逻辑代数中可以抽象地表示为 0 和 1,称为逻辑0状态和逻辑1状态。逻辑代数是按一定的逻辑关系进行运算的代数,是分析和设计数字电路的数学工具。在逻辑代数,只有和两种逻辑值,有三种基本逻辑运算,还有几种导出逻辑运算。逻辑代数中的变量称为逻辑变量,用大写字母表示。逻辑变量的取值只有两种,即逻辑0和逻辑1,0 和 1 称为逻辑常量,并不表示数量的大小,而是表示两种对立的逻辑状态。逻辑是指事物的因果关系,或者说条件和结

    13、果的关系,这些因果关系可以用逻辑运算来表示,也就是用逻辑代数来描述。1.3.1 基本逻辑运算基本逻辑运算1 1、与运算、与运算与逻辑的定义:仅当决定事件(Y)发生的所有条件(A,B,C,)均满足时,事件(Y)才能发生。表达式为:开关A,B串联控制灯泡Y电路图L=ABEABYEABYEABYEABYEABY两个开关必须同时接通,两个开关必须同时接通,灯才亮。逻辑表达式为:灯才亮。逻辑表达式为:A、B都断开,灯不亮。都断开,灯不亮。A断开、断开、B接通,灯不亮。接通,灯不亮。A接通、接通、B断开,灯不亮。断开,灯不亮。A、B都接通,灯亮。都接通,灯亮。这种把所有可能的条件组合及其对应结果一一列出来

    14、的表格叫做。将开关接通记作1,断开记作0;灯亮记作1,灯灭记作0。可以作出如下表格来描述与逻辑关系:A BY0 00 11 01 10001开关 A 开关 B灯 Y断开 断开断开 闭合闭合 断开闭合 闭合灭灭灭亮功能表功能表实现与逻辑的电路称为与门。与门的逻辑符号:YAB&真真值值表表逻辑符号逻辑符号2 2、或运算、或运算或逻辑的定义:当决定事件(Y)发生的各种条件(A,B,C,)中,只要有一个或多个条件具备,事件(Y)就发生。表达式为:开关A,B并联控制灯泡Y电路图L=ABEABYEABYEABY两个开关只要有一个接通,两个开关只要有一个接通,灯就会亮。逻辑表达式为:灯就会亮。逻辑表达式为:

    15、A、B都断开,灯不亮。都断开,灯不亮。A断开、断开、B接通,灯亮。接通,灯亮。A接通、接通、B断开,灯亮。断开,灯亮。A、B都接通,灯亮。都接通,灯亮。EABYEABYA BY0 00 11 01 10111 实现或逻辑的电路称为或门。或门的逻辑符号:AB1真值表真值表开关 A 开关 B灯 Y断开 断开断开 闭合闭合 断开闭合 闭合灭亮亮亮功能表功能表逻辑符号逻辑符号3 3、非运算、非运算非逻辑指的是逻辑的否定。当决定事件(Y)发生的条件(A)满足时,事件不发生;条件不满足,事件反而发生。表达式为:开关A控制灯泡Y电路图EAYRAY0110实现非逻辑的电路称为非门。非门的逻辑符号:YA1EAY

    16、RA断开,灯亮。断开,灯亮。EAYRA接通,灯灭。接通,灯灭。真真值值表表功功能能表表逻辑符号逻辑符号开关 A灯 Y断开闭合亮灭(1)与非运算:逻辑表达式为:ABY A BY0 00 11 01 11110 真值表YAB与非门的逻辑符号L=A+B&(2)或非运算:逻辑表达式为:BAYA BY0 00 11 01 11000 真值表YAB或非门的逻辑符号L=A+B11.3.2 复合逻辑运算复合逻辑运算(3)异或运算:逻辑表达式为:BABABAYA BY0 00 11 01 10110 真值表YAB异或门的逻辑符号L=A+B=1CDABYY1&ABCD与或非门的逻辑符号ABCD&1Y与或非门的等效

    17、电路(4)与或非运算:逻辑表达式为:(1)逻辑表达式:由逻辑变量和与、或、非3种运算符连接起来所构成的式子。在逻辑表达式中,等式右边的字母A、B、C、D等称为输入逻辑变量,等式左边的字母Y称为输出逻辑变量,字母上面没有非运算符的叫做原变量,有非运算符的叫做反变量。(2)逻辑函数:如果对应于输入逻辑变量A、B、C、的每一组确定值,输出逻辑变量Y就有唯一确定的值,则称Y是A、B、C、的逻辑函数。记为),(CBAfY:与普通代数不同的是,在逻辑代数中,不管是变量还是函数,其取值都只能是0或1,并且这里的0和1只表示两种不同的状态,没有数量的含义。1.3.3 逻辑函数及其相等概念逻辑函数及其相等概念(

    18、3)逻辑函数相等的概念:设有两个逻辑函数),(),(21CBAgYCBAfY它们的变量都是A、B、C、,如果对应于变量A、B、C、的任何一组变量取值,Y1和Y2的值都相同,则称Y1和Y2是相等的,记为Y1=Y2。若两个逻辑函数相等,则它们的真值表一定相同;反之,若两个函数的真值表完全相同,则这两个函数一定相等。因此,要证明两个逻辑函数是否相等,只要分别列出它们的真值表,看看它们的真值表是否相同即可。A BABABA BA+B0 00 11 01 1000111101 11 00 10 01110BAAB证明等式:1.4 1.4 逻辑代数的逻辑代数的公式、定理和规则公式、定理和规则1.4.1 逻

    19、辑代数的公式和定理逻辑代数的公式和定理与运算:111 001 010 000(1)常量之间的关系(2)基本公式0-1 律:AAAA10 0011AA或运算:111 101 110 000非 运 算:10 01互补律:0 1AAAA等幂律:AAAAAA 双 重 否 定 律:AA 分别令分别令A=0及及A=1代入这些公代入这些公式,即可证明式,即可证明它们的正确性。它们的正确性。(3)基本定理交换律:ABBAABBA结合律:)()()()(CBACBACBACBA分配律:)()()(CABACBACABACBA反演律(摩根定律):BABABABA.利用真值表很容易证利用真值表很容易证明这些公式的正

    20、确性。明这些公式的正确性。如证明如证明AB=BA:A B A.B B.A0 00 11 01 100010001(A+B)(A+C)=AA+AB+AC+BC分配率分配率A(B+C)=AB+ACA(B+C)=AB+AC=A+AB+AC+BC等幂率等幂率AA=AAA=A=A(1+B+C)+BC分配率分配率A(B+C)=AB+ACA(B+C)=AB+AC=A+BC0-10-1率率A+1=1A+1=1证明分配率:A+BA=(A+B)(A+C)证明:证明:(4)常用公式还原律:ABABAABABA)()(证 明:)(BAAABAA吸收率:BABAABABAAABAAABAA)()()(1BA BA 分配

    21、率分配率A+BC=(A+B)(A+C)A+BC=(A+B)(A+C)互补率互补率A+A=1A+A=10-10-1率率A A1=11=1冗余律:CAABBCCAAB证明:BCCAABBCAABCCAABBCAACAAB)(互补率互补率A+A=1A+A=1分配率分配率A(B+C)=AB+ACA(B+C)=AB+AC)1()1(BCACABCAAB 0-10-1率率A+1=1A+1=1例如,已知等式 ,用函数Y=AC代替等式中的A,根据代入规则,等式仍然成立,即有:(1)代入规则:任何一个含有变量A的等式,如果将所有出现A的位置都用同一个逻辑函数代替,则等式仍然成立。这个规则称为代入规则。BAABC

    22、BABACBAC)(1.4.2 逻辑代数运算的基本规则逻辑代数运算的基本规则(2)反演规则:对于任何一个逻辑表达式Y,如果将表达式中的所有“”换成“”,“”换成“”,“0”换成“1”,“1”换成“0”,那么所得到的表达式就是函数Y的反函数Y(或称补函数)。这个规则称为反演规则。例如:EDCBAY)(EDCBAYEDCBAYEDCBAY(3)对偶规则:对于任何一个逻辑表达式Y,如果将表达式中的所有“”换成“”,“”换成“”,“0”换成“1”,“1”换成“0”,而,则可得到的一个新的函数表达式Y,Y称为函数Y的对偶函数。这个规则称为对偶规则。例如:EDCBAY对偶规则的意义在于对偶规则的意义在于:

    23、如果两个函数相等,则它们的对偶函数也相等。利用对偶规则,可以使要证明及要记忆的公式数目减少一半。例如:在运用反演规则和对偶规则时,必须按照逻辑运算的优先顺序进行:先算括号,接着与运算,然后或运算,最后非运算,否则容易出错。ACABCBA)()(CABABCAABABAABABA)()()(EDCBAYEDCBAYEDCBAY1.4.3 逻辑函数的表达式逻辑函数的表达式(1)与或表达式:ACBAY(2)或与表达式:Y)(CABA(3)与非-与非表达式:Y ACBA(4)或非-或非表达式:YCABA(5)与或非表达式:YCABA一个逻辑函数的表达式可以有与或表达式、或与表达式、与非-与非表达式、或

    24、非-或非表达式、与或非表达式5种表示形式。一种形式的函数表达式相应于一种逻辑电路。尽管一个逻辑函数表达式的各种表示形式不同,但逻辑功能是相同的。1 1、逻辑函数的最小项及其性质逻辑函数的最小项及其性质(1)最小项:如果一个函数的某个乘积项包含了函数的全部变量,其中每个变量都以原变量或反变量的形式出现,且仅出现一次,则这个乘积项称为该函数的一个标准积项,通常称为最小项。3个变量A、B、C可组成8个最小项:ABCCABCBACBABCACBACBACBA、(2)最小项的表示方法:通常用符号mi来表示最小项。下标i的确定:把最小项中的原变量记为1,反变量记为0,当变量顺序确定后,可以按顺序排列成一个

    25、二进制数,则与这个二进制数相对应的十进制数,就是这个最小项的下标i。3个变量A、B、C的8个最小项可以分别表示为:ABCmCABmCBAmCBAmBCAmCBAmCBAmCBAm76543210、(3)最小项的性质:3 变量全部最小项的真值表A B Cm0m1m2m3m4m5m6m70 0 00 0 10 1 00 1 11 0 01 0 11 1 01 1 11000000001000000001000000001000000001000000001000000001000000001任意一个最小项,只有一组变量取值使其值为1。全部最小项的和必为1。ABCABC任意两个不同的最小项的乘积必为

    26、0。2 2、逻辑函数的最小项表达式逻辑函数的最小项表达式任何一个逻辑函数都可以表示成唯一的一组最小项之和,称为标准与或表达式,也称为最小项表达式对于不是最小项表达式的与或表达式,可利用公式AA1 和A(B+C)ABBC来配项展开成最小项表达式。)7,3,2,1,0()()(73210mmmmmmABCBCACBACBACBABCAABCCBACBACBABCABCAACCBBABCAY如果列出了函数的真值表,则只要将函数值为1的那些最小项相加,便是函数的最小项表达式。A B CY最小项0 0 00 0 10 1 00 1 11 0 01 0 11 1 01 1 101110100m0m1m2m

    27、3m4m5m6m7m1ABCm5ABCm3ABCm1ABCCBACBACBACBAmmmmmY)5,3,2,1(5321将真值表中函数值为0的那些最小项相加,便可得到反函数的最小项表达式。1.5 1.5 逻辑函逻辑函数的化简数的化简逻辑函数化简的意义:逻辑表达式越简单,实现它的电路越简单,电路工作越稳定可靠。1.5.1 逻辑函数的最简表达式逻辑函数的最简表达式1 1、最简与或表达式最简与或表达式乘积项最少、并且每个乘积项中的变量也最少的与或表达式。CABACBCABADCBCBECACABAEBAY最简与或表达式最简与或表达式2 2、最简与非与非表达式最简与非与非表达式非号最少、并且每个非号下

    28、面乘积项中的变量也最少的与非-与非表达式。CABACABACABAY在最简与或表达式的基础上两次取反用摩根定律去掉下面的非号3 3、最简或与表达式最简或与表达式括号最少、并且每个括号内相加的变量也最少的或与表达式。CABAYACBACBACBACABACABAY)()(CABAY求出反函数的最简与或表达式利用反演规则写出函数的最简或与表达式4 4、最简或非或非表达式最简或非或非表达式非号最少、并且每个非号下面相加的变量也最少的或非-或非表达式。CABACABACABACABAY)()(求最简或与表达式两次取反、最简与或非表达式最简与或非表达式非号下面相加的乘积项最少、并且每个乘积项中相乘的变量

    29、也最少的与或非表达式。ACBACABACABAY求最简或非-或非表达式用摩根定律去掉下面的非号用摩根定律去掉大非号下面的非号1.5.2 逻辑函数的公式化简法逻辑函数的公式化简法1 1、并项法、并项法逻辑函数的公式化简法就是运用逻辑代数的基本公式、定理和规则来化简逻辑函数。利用公式1,将两项合并为一项,并消去一个变量。BCCBCBBCCBBCAACBBCAABCY)()(1ABCBCABCAABCCBAABCCABAABCY)()(2运用摩根定律运用分配律运用分配律2 2、吸收法、吸收法BAFEBCDABAY)(1BABCDBADABADBCDABADCDBAY)()(2。运用摩根定律()利用公

    30、式,消去多余的项。()利用公式,消去多余的变量。CABCABABCBAABCBCAABY)(DCBADBACBADBACBADBACCBADCBDCACBAY)()(。、配项法、配项法()利用公式(),为某一项配上其所缺的变量,以便用其它方法进行化简。CACBBABBCAACBCBACBABCACBACBACBBACCBACBAACBBABACBCBBAY)()1()1()()(()利用公式,为某项配上其所能合并的项。BCACABBCAABCCBAABCCABABCBCACBACABABCY)()()(、消去冗余项法、消去冗余项法利用冗余律,将冗余项消去。DCACBAADEDCACBADCAD

    31、EACBAY)(1CBABFGDEACCBABY)(2例:化简函数)()()()(GEAGCECGADBDBY解:先求出Y的对偶函数Y,并对其进行化简。GCCEDBAEGGCCEDAGBDBY求Y的对偶函数,便得的最简或与表达式。)()(GCECDBY1.5.3 逻辑函数的图形化简法逻辑函数的图形化简法1 1、卡诺图的构成、卡诺图的构成逻辑函数的图形化简法是将逻辑函数用卡诺图来表示,利用卡诺图来化简逻辑函数。将逻辑函数真值表中的最小项重新排列成矩阵形式,并且使,这样构成的图形就是卡诺图。卡诺图的特点是任意两个相邻的最小项在图中也是相邻的。(相邻项是指两个最小项只有一个因子互为反变量,其余因子均

    32、相同,又称为逻辑相邻项)。A B010m0m21m1m3 ABC000111100m0m2m6m41m1m3m7m5 2 变量卡诺图 3 变量卡诺图 ABCD0001111000m0m4m12m801m1m5m13m911m3m7m15m1110m2m6m14m10 4 变量卡诺图两个相邻最小项可以合并消去一个变量BACCBACBACBA)(DCADCBADCAB逻辑函数化简的实质就是相邻最小项的合并2 2、逻辑函数在卡诺图中的表示、逻辑函数在卡诺图中的表示(1)逻辑函数是以真值表或者以最小项表达式给出:在卡诺图上那些与给定逻辑函数的最小项相对应的方格内填入1,其余的方格内填入0。ABCD00

    33、011110000100011000111111100110)15,14,11,7,6,4,3,1(),(mDCBAYm1m3m4m7m6m11m15m14(2)逻辑函数以一般的逻辑表达式给出:先将函数变换为与或表达式(不必变换为最小项之和的形式),然后在卡诺图上与每一个乘积项所包含的那些最小项(该乘积项就是这些最小项的公因子)相对应的方格内填入1,其余的方格内填入0。)(CBDAYCBDAY ABC D00011110001100010000111001101101的公因子的公因子:如果求得了函数的反函数,则对中所包含的各个最小项,在卡诺图相应方格内填入0,其余方格内填入1。3 3、卡诺图的

    34、性质、卡诺图的性质 ABC D00011110000100010001110001100100(1)任何两个(21个)标1的相邻最小项,可以合并为一项,并消去一个变量(消去互为反变量的因子,保留公因子)。AB C000111100100110110CBACBAABCBCADBCADCBACDBADCBACBBCDBADBA ABCD00011110000100011111110110100100(2)任何4个(22个)标1的相邻最小项,可以合并为一项,并消去2个变量。A B C000111100111110110CCBAABBABACBACABCBACBA)(BBACCACACAABCCABB

    35、CACBA)(BADC ABC D00011110001001010110110110101001 ABC D00011110000110011001111001100110 ABC D00011110000000011111111111100000 ABCD00011110001001011001111001101001(3)任何8个(23个)标1的相邻最小项,可以合并为一项,并消去3个变量。4 4、图形法化简的基本步骤、图形法化简的基本步骤逻辑表达式逻辑表达式或真值表或真值表卡诺图卡诺图)15,13,12,11,8,7,5,3(),(mDCBAY A BC D0 00 11 11 00 0

    36、00110 101101 111111 00000 1 1 合并最小项合并最小项圈越大越好,但每个圈中标的方格数目必须为个。同一个方格可同时画在几个圈内,但每个圈都要有新的方格,否则它就是多余的。不能漏掉任何一个标的方格。i2最简与或表达式最简与或表达式 A BC D0 00 11 11 00 000110 101101 111111 00000DCACDBDDCBAY),(冗余项 2 2 3 3 将代表每个圈的乘积项相加 ABC D00011110 ABC D00011110001101001101010111010111110011110011100000100000两点说明:在有些情况下

    37、,最小项的圈法不只一种,得到的各个乘积项组成的与或表达式各不相同,哪个是最简的,要经过比较、检查才能确定。不是最简最简 ABCD00011110 ABCD00011110001100001100011110011110110010110010101010101010 在有些情况下,不同圈法得到的与或表达式都是最简形式。即一个函数的最简与或表达式不是唯一的。1.5.4 含随意项的逻辑函数的化简含随意项的逻辑函数的化简:函数可以随意取值(可以为0,也可以为1)或不会出现的变量取值所对应的最小项称为随意项,也叫做约束项或无关项。1 1、含随意项的逻辑函数含随意项的逻辑函数例如:判断一位十进制数是否为

    38、偶数。不会出现不会出现不会出现不会出现不会出现不会出现 说 明 1 1 1 10 0 1 1 1 1 1 1 01 0 1 1 0 1 1 0 10 0 1 0 1 1 1 0 01 0 1 0 0 1 0 1 10 0 0 1 1 1 0 1 01 0 0 1 00 1 0 0 10 0 0 0 11 1 0 0 01 0 0 0 0Y A B C DY A B C D ABCD00011110001110100011001011输入变量A,B,C,D取值为00001001时,逻辑函数Y有确定的值,根据题意,偶数时为1,奇数时为0。)8,6,4,2,0(),(mDCBAYA,B,C,D取值为

    39、1010 1111的情况不会出现或不允许出现,对应的最小项属于随意项。用符号“”、“”或“d”表示。随意项之和构成的逻辑表达式叫做 随意条件或约束条件,用一个值恒为 0 的条件等式表示。0)15,14,13,12,11,10(d含有随意条件的逻辑函数可以表示成如下形式:)15,14,13,12,11,10()8,6,4,2,0(),(dmDCBAF2 2、含随意项的逻辑函数的化简含随意项的逻辑函数的化简在逻辑函数的化简中,充分利用随意项可以得到更加简单的逻辑表达式,因而其相应的逻辑电路也更简单。在化简过程中,随意项的取值可视具体情况取0或取1。具体地讲,如果随意项对化简有利,则取1;如果随意项

    40、对化简不利,则取0。ABCD00011110001110100011001011不利用随意项的化简结果为:DCADAY利用随意项的化简结果为:DY 3 3、变量互相排斥的逻辑函数的化简变量互相排斥的逻辑函数的化简在一组变量中,如果只要有一个变量取值为1,则其它变量的值就一定为0,具有这种制约关系的变量叫做互相排斥的变量。变量互相排斥的逻辑函数也是一种含有随意项的逻辑函数。A B CY0 0 00 0 10 1 00 1 11 0 01 0 11 1 01 1 10111 AB C00011110001111YABC111简化真值表CBAY1.6 1.6 逻辑函数的表逻辑函数的表示方法及其相互转

    41、换示方法及其相互转换1.6.1 逻辑函数的表示方法逻辑函数的表示方法1 1、真值表真值表真值表:是由变量的所有可能取值组合及其对应的函数值所构成的表格。真值表列写方法:每一个变量均有0、1两种取值,n个变量共有2i种不同的取值,将这2i种不同的取值按顺序(一般按二进制递增规律)排列起来,同时在相应位置上填入函数的值,便可得到逻辑函数的真值表。A B CY0 0 00 0 10 1 00 1 11 0 01 0 11 1 01 1 100010011例如:当A=B=1、或则B=C=1时,函数Y=1;否则Y=0。2 2、逻辑表达式逻辑表达式逻辑表达式:是由逻辑变量和与、或、非3种运算符连接起来所构

    42、成的式子。函数的标准与或表达式的列写方法:将函数的真值表中那些使函数值为1的最小项相加,便得到函数的标准与或表达式。)7,6,3(mABCCABBCAY3 3、卡诺图卡诺图卡诺图:是由表示变量的所有可能取值组合的小方格所构成的图形。逻辑函数卡诺图的填写方法:在那些使函数值为1的变量取值组合所对应的小方格内填入1,其余的方格内填入0,便得到该函数的卡诺图。A B C0001111000010101104 4、逻辑图逻辑图逻辑图:是由表示逻辑运算的逻辑符号所构成的图形。Y&1&ABBC、波形、波形图图波形图:是由输入变量的所有可能取值组合的高、低电平及其对应的输出函数值的高、低电平所构成的图形。1

    43、.6.2 逻辑函数表示方法之间的转换逻辑函数表示方法之间的转换1 1、由真值表到、由真值表到逻辑图的转换逻辑图的转换真值表真值表逻辑表逻辑表达式或达式或卡诺图卡诺图A B CY0 0 00 0 10 1 00 1 11 0 01 0 11 1 01 1 100100111)7,6,5,2(mABCCABCBACBAY 1 1 ABC000111100010110011最简与或最简与或表达式表达式化简 2 或 ACBACBAY 2&画逻辑图画逻辑图 3&1ABCA最简与或最简与或表达式表达式ACBACBAY&CBBAACABACYACBBAACY&ABCABAC若用与非门实若用与非门实现,将最简

    44、与现,将最简与或表达式变换或表达式变换乘最简与非乘最简与非-与非表达式与非表达式ACBACBAY 3 2 2、由、由逻辑图逻辑图到真值表到真值表的转换的转换逻辑图逻辑图逻辑表逻辑表达式达式 1 1 最简与或最简与或表达式表达式化简 2&A1CBBAACY11CBAY1BAY2CAY31Y2Y3YY)()(321CABACBAYYYY 2 CAABCBACBACBACABACBAY)()()(从输入到输出逐级写出A B CY0 0 00 0 10 1 00 1 11 0 01 0 11 1 01 1 101001011最简与或最简与或表达式表达式 3 真值表真值表CAABCBAY 3 数字电子技

    45、术数字电子技术(第二版)(第二版)第第第第第第2 2 2章章章章章章 门电路门电路门电路门电路门电路门电路学习要点学习要点l掌握各种掌握各种TTL门电路和门电路和CMOS门电路的逻门电路的逻辑功能辑功能。l理解理解TTL门电路的主要参数及门电路的主要参数及TTL电路与电路与CMOS电路的主要差异电路的主要差异。l了解二极管、双极型晶体管和了解二极管、双极型晶体管和MOS管的管的开关特性开关特性,l了解门电路的使用常识了解门电路的使用常识,集电极开路门集电极开路门、三态门三态门、传输门等电路及功能传输门等电路及功能。第第第第第第2 2 2章章章章章章 门电路门电路门电路门电路门电路门电路2.1

    46、半导体元半导体元件的开关特性件的开关特性获得高、低电平的基本方法:利用半导体开关元件的导通、截止(即开、关)两种工作状态。逻辑0和1:电子电路中用高、低电平来表示。2.1.1 二极管的开关特性二极管的开关特性逻辑门电路:用以实现基本和常用逻辑运算的电子电路。简称门电路。基本和常用门电路有与门、或门、非门(反相器)、与非门、或非门、与或非门和异或门等。二极管符号:正极负极uD +ui RL +uo D开关电路 IF 0.5 0.7iD(mA)uD(V)伏安特性UBR0 +ui=0V RL +uo Dui=0V时的等效电路 +ui=5V RL +uo D 0.7Vui=5V 时的等效电路uouou

    47、i0V时,二极管截止,如同开关断开,uo0V。ui5V时,二极管导通,如同0.7V的电压源,uo4.3V。二极管的反向恢复时间限制了二极管的开关速度。Ui0.5V时,二极管导通。NPN型三极管截止、放大、饱和3 种工作状态的特点工作状态截 止放 大饱 和条 件iB00iBIBSiBIBS偏置情况发射结反偏集电结反偏uBE0,uBC0,uBC0,uBC0集电极电流iC0iCiBiCICSce间电压uCEVCCuCEVCCiCRcuCEUCES0.3V工作特点ce间等效电阻很大,相当开关断开可变很小,相当开关闭合2.1.2 晶体管的开关特性晶体管的开关特性Q2ui iB e Rb biC(mA)直

    48、流负载线 VCC Rc 0+VCCiC uo工作原理电路输出特性曲线80A60A40A20AiB=00 UCES VCC uCE(V)0 0.5 uBE(V)输入特性曲线iB(A)Q1Q Rc cRbRc+VCCbce截止状态饱和状态iBIBSui=UIL0.5Vuo=+VCCui=UIHuo=0.3VRbRc+VCCbce0.7V0.3V饱和区截止区放大区10kui iB eRb b+VCC=+5ViC uo Rc1k c=50ui=0.3V时,因为uBE0.5V,iB=0,三极管工作在截止状态,ic=0。因为ic=0,所以输出电压:ui=1V时,三极管导通,基极电流:因为0iBIBS,三极

    49、管工作在饱和状态。输出电压:uoUCES0.3V iD(mA)0uDS(V)0 UT uGS(V)iD(mA)uGS=10V8V6V4V2V工作原理电路转移特性曲线输出特性曲线uiuiGDSRD+VDDGDSRD+VDDGDSRD+VDD截止状态uiUTuo02.1.3 场效应管的开关特性场效应管的开关特性2.2 分立元件分立元件门电路门电路2.2.1 二极管与门二极管与门+VCC(+5V)R 3k Y D1A D2B5V0VABY&uA uBuYD1 D20V 0V0V 5V5V 0V5V 5V0.7V0.7V0.7V5V导通 导通导通 截止截止 导通截止 截止A BY0 00 11 01

    50、10001Y=ABA D1B D2 5V 0V YR3kABY 1uA uBuYD1 D20V 0V0V 5V5V 0V5V 5V0V4.3V4.3V4.3V截 止 截 止截 止 导 通导 通 截 止导 通 导 通A BY0 00 11 01 10111Y=A+B2.2.2 二极管或门二极管或门A =30+5V Y电路图1逻辑符号AY1k4.3kuA0V时,三极管截止,iB0,iC0,输出电压uYVCC5VuA5V时,三极管导通。基极电流为:iBIBS,三极管工作在饱和状态。输出电压uYUCES0.3V。mA1mA3.47.05Bi三极管临界饱和时的基极电流为:mA16.01303.05BSI

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:电子教案-《数字电子技术(第二版)》-李中发课件.ppt
    链接地址:https://www.163wenku.com/p-4429291.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库