书签 分享 收藏 举报 版权申诉 / 52
上传文档赚钱

类型时间序列分析教案课件.ppt

  • 上传人(卖家):晟晟文业
  • 文档编号:4422710
  • 上传时间:2022-12-08
  • 格式:PPT
  • 页数:52
  • 大小:2.04MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《时间序列分析教案课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    时间 序列 分析 教案 课件
    资源描述:

    1、2022-12-8时间序列分析教案10SPSS时间序列分析时间序列分析教案教案时间序列分析教案横截面数据时间序列数据横截面数据时间序列数据v 人们对统计数据往往可以根据其特点从两个方面来切入人们对统计数据往往可以根据其特点从两个方面来切入,以简化分析过程。,以简化分析过程。v 一个是研究所谓横截面一个是研究所谓横截面(cross section)数据,也就数据,也就是对大体上和时间无关的不同对象的观测值组成的数据是对大体上和时间无关的不同对象的观测值组成的数据v另一个称为时间序列另一个称为时间序列(time series),也就是由对象,也就是由对象在不同时间的观测值形成的数据。在不同时间的观

    2、测值形成的数据。v前面讨论的模型多是和横截面数据有关。这里将讨论时前面讨论的模型多是和横截面数据有关。这里将讨论时间序列的分析。我们将不讨论更加复杂的包含这两方面间序列的分析。我们将不讨论更加复杂的包含这两方面的数据。的数据。时间序列分析教案时间序列和回归时间序列和回归v 时间序列分析也是一种回归。时间序列分析也是一种回归。v 回归分析的目的是建立因变量和自变量之间关系的模型回归分析的目的是建立因变量和自变量之间关系的模型;并且可以用自变量来对因变量进行预测。通常线性回;并且可以用自变量来对因变量进行预测。通常线性回归分析因变量的观测值假定是互相独立并且有同样分布归分析因变量的观测值假定是互相

    3、独立并且有同样分布v而时间序列的最大特点是观测值并不独立。时间序列的而时间序列的最大特点是观测值并不独立。时间序列的一个目的是用变量过去的观测值来预测同一变量的未来一个目的是用变量过去的观测值来预测同一变量的未来值。值。v即时间序列的因变量为变量未来的可能值,而用来预测即时间序列的因变量为变量未来的可能值,而用来预测的自变量中就包含该变量的一系列历史观测值。的自变量中就包含该变量的一系列历史观测值。v当然时间序列的自变量也可能包含随着时间度量的独立当然时间序列的自变量也可能包含随着时间度量的独立变量。变量。时间序列分析教案v 从下图可以看出。总的趋势是增长的,但增长并不是单调上升的从下图可以看

    4、出。总的趋势是增长的,但增长并不是单调上升的;有涨有落。但这种升降不是杂乱无章的,和季节或月份的周期;有涨有落。但这种升降不是杂乱无章的,和季节或月份的周期有关系。当然,除了增长的趋势和季节影响之外,还有些无规律有关系。当然,除了增长的趋势和季节影响之外,还有些无规律的随机因素的作用。的随机因素的作用。时间序列的组成部分时间序列的组成部分 时间序列分析教案时间序列分析教案时间序列的分解时间序列的分解 v 一个时间序列可能由趋势、季节、循环和随机成分组成,因此:一个时间序列可能由趋势、季节、循环和随机成分组成,因此:v 如果要想对一个时间序列本身进行较深入的研究,要把序列的这如果要想对一个时间序

    5、列本身进行较深入的研究,要把序列的这些成分分解出来、或者把它们过虑掉。些成分分解出来、或者把它们过虑掉。v 如果要进行预测,则最好把模型中的与趋势、季节、循环等成分如果要进行预测,则最好把模型中的与趋势、季节、循环等成分有关的参数估计出来。有关的参数估计出来。v 时间序列的分解,通过时间序列的分解,通过计算机统计计算机统计软件,可以很轻而易举地得到软件,可以很轻而易举地得到该序列的趋势、季节和误差成分。该序列的趋势、季节和误差成分。spssspss分解步骤分解步骤:分析:分析预测预测季节性分解季节性分解时间序列分析教案时间序列模型理论基础时间序列模型理论基础:指数平滑指数平滑 v 如果不仅满足

    6、于分解现有的时间序列,想要对未来进行预测,就如果不仅满足于分解现有的时间序列,想要对未来进行预测,就需要建立模型。这里先介绍比较简单的需要建立模型。这里先介绍比较简单的指数平滑指数平滑(exponential smoothing)。v 指数平滑指数平滑只能用于纯粹时间序列只能用于纯粹时间序列的情况,而不能用于含有独立变的情况,而不能用于含有独立变量时间序列的因果关系的研究。量时间序列的因果关系的研究。v 指数平滑的原理为:当利用过去观测值的加权平均来预测未来的指数平滑的原理为:当利用过去观测值的加权平均来预测未来的观测值时(这个过程称为平滑),离得越近的观测值要给以更多观测值时(这个过程称为平

    7、滑),离得越近的观测值要给以更多的权。的权。v 而而“指数指数”意味着:依已有观测值意味着:依已有观测值“老老”的程度,其权数按指数的程度,其权数按指数速度递减。速度递减。v 以简单的没有趋势和没有季节成分的纯粹时间序列为例,指数平以简单的没有趋势和没有季节成分的纯粹时间序列为例,指数平滑在数学上是一个几何级数。滑在数学上是一个几何级数。时间序列分析教案v 这时,如果用这时,如果用Yt表示在表示在t时间的平滑后的数据(或预测值),而时间的平滑后的数据(或预测值),而用用X1,X2,Xt表示原始的时间序列。那么指数平滑模型为:表示原始的时间序列。那么指数平滑模型为:或者,等价地:或者,等价地:这

    8、里的系数为几何级数。因此称之为这里的系数为几何级数。因此称之为“几何平滑几何平滑”比使人不解的比使人不解的“指数平滑指数平滑”似乎更有道理。似乎更有道理。根据数据,可以得到这些模型参数的估计以及对未来的预测。根据数据,可以得到这些模型参数的估计以及对未来的预测。时间序列模型理论基础时间序列模型理论基础:指数平滑指数平滑 如果要对比较复杂的纯粹时间序列进行细致的分析,指数平如果要对比较复杂的纯粹时间序列进行细致的分析,指数平滑往往是无法满足要求的;而若想对有独立变量的时间序列进滑往往是无法满足要求的;而若想对有独立变量的时间序列进行预测,指数平滑更是无能为力。下面介绍高精度的行预测,指数平滑更是

    9、无能为力。下面介绍高精度的ARIMA模模型型。时间序列分析教案ARIMA模型基础模型基础:AR模型模型v AR 模型也称自回归模型。假定时间序列用模型也称自回归模型。假定时间序列用X1,X2,Xt表示表示,则一个纯粹的,则一个纯粹的AR(p)模型意味着变量的一个观测值由其以前模型意味着变量的一个观测值由其以前的的p个观测值的线性组合加上个观测值的线性组合加上随机误差项随机误差项zt(该误差是独立无关(该误差是独立无关的)而得:的)而得:这看上去象自己对自己回归一样,所以称为自回归模型;它牵涉这看上去象自己对自己回归一样,所以称为自回归模型;它牵涉到过去到过去p个观测值(相关的观测值间隔最多为个

    10、观测值(相关的观测值间隔最多为p个)个).yt=1yt-1+2yt-2+pyt-p+zt 时间序列分析教案ARIMA模型基础模型基础:MA模型模型v MA 模型也称移动平均模型,一个纯粹的模型也称移动平均模型,一个纯粹的MA(q)模型模型意味着变量的一个观测值的误差由目前的和先前的意味着变量的一个观测值的误差由目前的和先前的q个个随机误差的线性的组合而得:随机误差的线性的组合而得:由于右边系数的和不为由于右边系数的和不为1(q q 甚至不一定是正数),因此甚至不一定是正数),因此叫做叫做“移动平均移动平均”不如叫做不如叫做“移动线性组合移动线性组合”更确切。更确切。zt=t-1t-1-2t-2

    11、-qt-q时间序列分析教案ARIMA模型基础模型基础:ARMA模型模型v 自回归和移动平均模型也即自回归和移动平均模型也即ARMA(p,q)模型,是模型,是AR(p)模型和模型和MA(q)模型的组合:模型的组合:ARMA(p,0)模型就是模型就是AR(p)模型,而模型,而ARMA(0,q)模型就模型就是是MA(q)模型。这个一般模型有模型。这个一般模型有p+q个参数要估计,看起个参数要估计,看起来很繁琐,但利用计算机软件则是常规运算,并不复杂。来很繁琐,但利用计算机软件则是常规运算,并不复杂。yt=1yt-1+2yt-2+pyt-p +t-1t-1-2t-2-qt-q时间序列分析教案ARIMA

    12、模型基础模型基础:平稳性和可逆性问题平稳性和可逆性问题v ARMA(p,q)模型有意义则要求时间序列满足平稳性和可逆模型有意义则要求时间序列满足平稳性和可逆性的条件性的条件.v 这意味着序列均值不随着时间增加或减少,序列的方差不随时这意味着序列均值不随着时间增加或减少,序列的方差不随时间变化等。间变化等。v 一个实际的时间序列是否满足这些条件是无法在数学上验证的一个实际的时间序列是否满足这些条件是无法在数学上验证的,但模型可以近似地从后面要介绍的时间序列的自相关函数和,但模型可以近似地从后面要介绍的时间序列的自相关函数和偏相关函数图来识别。偏相关函数图来识别。v 一般人们所关注的的有趋势、季节

    13、和循环成分的时间序列都不一般人们所关注的的有趋势、季节和循环成分的时间序列都不是平稳的。这时就需要对时间序列进行差分来消除这些使序列是平稳的。这时就需要对时间序列进行差分来消除这些使序列不平稳的成分,而使其变成平稳的时间序列,并估计不平稳的成分,而使其变成平稳的时间序列,并估计ARMA模型模型.v 估计之后再转变该模型,使之适应于差分之前的序列得到的模估计之后再转变该模型,使之适应于差分之前的序列得到的模型称为型称为ARIMA模型。模型。时间序列分析教案ARIMA模型基础模型基础:差分差分v 差分是什么意思呢?差分可以是每一个观测值减去其前面的一个差分是什么意思呢?差分可以是每一个观测值减去其

    14、前面的一个观测值,即观测值,即Xt-Xt-1。这样,这样,v 如果时间序列有一个斜率不变的趋势,经过这样的差分之后,该如果时间序列有一个斜率不变的趋势,经过这样的差分之后,该趋势就会被消除。趋势就会被消除。一般而言,一次差分可以将序列中的线性趋势一般而言,一次差分可以将序列中的线性趋势去掉,二次差分可以将序列中的抛物线趋势去掉。去掉,二次差分可以将序列中的抛物线趋势去掉。v 对于复杂情况,可能要进行多次差分,才能够使得变换后的时间对于复杂情况,可能要进行多次差分,才能够使得变换后的时间序列平稳。序列平稳。v 上面引进了一些必要的术语和概念。下面就如何识别模型进行说上面引进了一些必要的术语和概念

    15、。下面就如何识别模型进行说明。明。v 要想拟合要想拟合ARIMAARIMA模型,必须先把它利用差分变成模型,必须先把它利用差分变成ARMA(ARMA(p,qp,q)模型,模型,并确定是否平稳,然后确定参数并确定是否平稳,然后确定参数p p,q q。时间序列分析教案ARIMA(p,d,q)(P,D,Q)s模型模型v在对含有季节、趋势和循环等成分的时间序列进行在对含有季节、趋势和循环等成分的时间序列进行ARIMA模型的拟合研究模型的拟合研究和预测时,就不象对纯粹的满足平稳条件的和预测时,就不象对纯粹的满足平稳条件的ARMA模型那么简单了。模型那么简单了。v一般的一般的ARIMA模型有多个参数,没有

    16、季节成分的可以记为模型有多个参数,没有季节成分的可以记为ARIMA(p,d,q),如果没有必要利用差分来消除趋势或循环成分时,差分阶数,如果没有必要利用差分来消除趋势或循环成分时,差分阶数d=0,模型为,模型为ARIMA(p,0,q),即,即ARMA(p,q)。v在 有 已 知 的 固 定 周 期在 有 已 知 的 固 定 周 期 s 时,模 型 多 了时,模 型 多 了 4 个 参 数,可 记 为个 参 数,可 记 为ARIMA(p,d,q)(P,D,Q)s。(如果是每年的月数据则(如果是每年的月数据则s=12,其它周期依,其它周期依此类推,如每月的周数据此类推,如每月的周数据s=4等)等)

    17、v这里增加的除了周期这里增加的除了周期s已知之外,还有描述季节本身的模型识别问题。其中,已知之外,还有描述季节本身的模型识别问题。其中,P、Q为季节性的自回归和移动平均阶数,为季节性的自回归和移动平均阶数,D为季节差分的阶数,为季节差分的阶数,s为季节周为季节周期。期。时间序列分析教案时间序列模型时间序列模型:ARIMA(p,d,q)模型模型v ARIMA 模型基本原理:模型基本原理:v ARIMA模型全称为自回归移动平均模型模型全称为自回归移动平均模型(Autoregressive Integrated Moving Average Model,简记简记ARIMA),是由博克思,是由博克思(

    18、Box)和詹金斯和詹金斯(Jenkins)于于70年代初提出的一著名时间序列预测方法,所以又称为年代初提出的一著名时间序列预测方法,所以又称为box-jenkins模型、博克思模型、博克思-詹金斯法。詹金斯法。vARIMA 方法是时间序列短期预测中一种常用而有效的方法方法是时间序列短期预测中一种常用而有效的方法,它是用变量它是用变量Yt 自自身的滞后项以及随机误差项来解释该变量身的滞后项以及随机误差项来解释该变量,ARIMA 方法能够在对数据模式未知方法能够在对数据模式未知的情况下找到适合数据所考察的模型的情况下找到适合数据所考察的模型,因而在预测方面得到了广泛应用。它的具因而在预测方面得到了

    19、广泛应用。它的具体形式可表达成体形式可表达成ARIMA(p,d,q),其中其中p 表示自回归过程阶数表示自回归过程阶数;d 表示差表示差分的阶数分的阶数;q 表示移动平均过程的阶数。如果时间序列数据是非平稳的表示移动平均过程的阶数。如果时间序列数据是非平稳的,则需要则需要对其进行对其进行d 阶差分阶差分,使其平稳化使其平稳化,然后对平稳化后的序列用然后对平稳化后的序列用ARIMA 建模。建模。注:注:spss中中ARIMA 建模方法会自动进行差分和平滑处理,但不处理异常值。建模方法会自动进行差分和平滑处理,但不处理异常值。时间序列分析教案时间序列模型时间序列模型:SARIMA 模型模型v 在对

    20、含有季节、趋势和循环等成分的时间序列进行在对含有季节、趋势和循环等成分的时间序列进行ARIMA模型模型的拟合研究和预测时,模型需要增加的拟合研究和预测时,模型需要增加4个参数,增加后可记为个参数,增加后可记为ARIMA(p,d,q)(P,D,Q)s。(在有已知的固定周期(在有已知的固定周期s时,如果时,如果是每年的月数据则是每年的月数据则s=12,其它周期依此类推,如每月的周数据,其它周期依此类推,如每月的周数据s=4等)等)v 这里增加的除了周期这里增加的除了周期s已知之外,还有描述季节本身的模型识别已知之外,还有描述季节本身的模型识别问题。其中,问题。其中,P、Q为季节性的自回归和移动平均

    21、阶数,为季节性的自回归和移动平均阶数,D为季为季节差分的阶数,节差分的阶数,s为季节周期。为季节周期。时间序列分析教案时间序列模型还可增加自时间序列模型还可增加自变量来提高预测的准确性变量来提高预测的准确性(有的情况下)。但应(有的情况下)。但应注注意:意:使用使用专家建模器专家建模器时,时,只有在自变量与因变量之只有在自变量与因变量之间具有统计显著性关系时间具有统计显著性关系时才会包括自变量。如果选才会包括自变量。如果选择择ARIMA模型模型,“变量变量”选项卡上指定的所有自变选项卡上指定的所有自变量都包括在该模型中,这量都包括在该模型中,这点与使用专家建模器相反点与使用专家建模器相反。添加

    22、方法如右图所示。添加方法如右图所示。时间序列模型时间序列模型:带自变量的带自变量的ARIMA模型模型时间序列分析教案v 时间序列分析的一般步骤时间序列分析的一般步骤:v数据的准备阶段数据的准备阶段v数据的观察及预处理阶段数据的观察及预处理阶段v数据分析和建模阶段数据分析和建模阶段v模型的评价阶段模型的评价阶段v模型的实施阶段(预测)模型的实施阶段(预测)时间序列分析教案数据准备数据准备 SPSS的数据准备包括数据文件的建立、时间定义和数的数据准备包括数据文件的建立、时间定义和数据期间的指定。其中数据文件的建立与一般据期间的指定。其中数据文件的建立与一般SPSS数据文件数据文件的建立方法相同,每

    23、一个变量将对应一个时间序列数据,且的建立方法相同,每一个变量将对应一个时间序列数据,且不必建立标志时间的变量。具体操作这里不再赘述,仅重点不必建立标志时间的变量。具体操作这里不再赘述,仅重点讨论时间定义的操作步骤。讨论时间定义的操作步骤。SPSS的时间定义功能用来将数据编辑窗口中的一个或的时间定义功能用来将数据编辑窗口中的一个或多个变量指定为时间序列变量,并给它们赋予相应的时间标多个变量指定为时间序列变量,并给它们赋予相应的时间标志,具体操作步骤是:志,具体操作步骤是:(1)选择菜单:)选择菜单:数据数据定义日期定义日期,出现窗口:,出现窗口:时间序列分析教案v(2)个案框提供了多种时间形式,

    24、可根据数据的实际情况)个案框提供了多种时间形式,可根据数据的实际情况选择与其匹配的时间格式和参数。选择与其匹配的时间格式和参数。至此,完成了至此,完成了SPSS的时间定义操作。的时间定义操作。SPSS将在当前数据编辑窗口中将在当前数据编辑窗口中 自动生成标志时间的变量。同时,在输出窗口中将输出一个简要的日志自动生成标志时间的变量。同时,在输出窗口中将输出一个简要的日志,说明时间标志变量及其格式和包含的周期等。说明时间标志变量及其格式和包含的周期等。时间序列分析教案时间序列的图形化观察及预处理时间序列的图形化观察及预处理v 时间序列的图形化及检验时间序列的图形化及检验目的目的 通过图形化观察和检

    25、验能够把握时间序列的诸通过图形化观察和检验能够把握时间序列的诸多特征,如时间序列的发展趋势是上升还是下降,多特征,如时间序列的发展趋势是上升还是下降,还是没有规律的上下波动;时间序列的变化的周期还是没有规律的上下波动;时间序列的变化的周期性特点;时间序列波动幅度的变化规律;时间序列性特点;时间序列波动幅度的变化规律;时间序列中是否存在异常点,时间序列不同时间点上数据的中是否存在异常点,时间序列不同时间点上数据的关系等。关系等。时间序列分析教案v 时间序列的图形化观察工具时间序列的图形化观察工具 序列图(序列图(Sequence)一个平稳的时间序列在水平方向平稳发展,在垂直方向一个平稳的时间序列

    26、在水平方向平稳发展,在垂直方向的波动性保持稳定,非平稳性的表现形式多种多样,主要特的波动性保持稳定,非平稳性的表现形式多种多样,主要特征有:趋势性、异方差性、波动性、周期性、季节性、以及征有:趋势性、异方差性、波动性、周期性、季节性、以及这些特征的交错混杂等。这些特征的交错混杂等。序列图还可用于对序列异常值的探索,以及体现序列的序列图还可用于对序列异常值的探索,以及体现序列的“簇集性簇集性”,异常值是那些由于外界因素的干扰而导致的与,异常值是那些由于外界因素的干扰而导致的与序列的正常数值范围偏差巨大的数据点。序列的正常数值范围偏差巨大的数据点。“簇集性簇集性”是指数是指数据在一段时间内具有相似

    27、的水平。在不同的水平间跳跃性变据在一段时间内具有相似的水平。在不同的水平间跳跃性变化,而非平缓性变化。化,而非平缓性变化。时间序列分析教案自相关函数图和偏自相关函数图(自相关函数图和偏自相关函数图(ACFPACF)所谓自相关是指序列与其自身经过某些阶数滞后形成的序列之间存在某种程度的相关性所谓自相关是指序列与其自身经过某些阶数滞后形成的序列之间存在某种程度的相关性(即数据与其前(即数据与其前k个数据的相关性),对自相关的测度往往采用自协方差函数和自相关函数个数据的相关性),对自相关的测度往往采用自协方差函数和自相关函数。白噪声序列(平稳序列)的各阶自相关函数和偏自相关函数值在理论上均为。白噪声

    28、序列(平稳序列)的各阶自相关函数和偏自相关函数值在理论上均为0(即数据(即数据与其前面的数据无相关性)。而实际当中序列多少会有一些相关性,但一般会落在置信区与其前面的数据无相关性)。而实际当中序列多少会有一些相关性,但一般会落在置信区间内,同时没有明显的变化规律。对于平稳的时间序列,理想情形是自相关函数在一定的间内,同时没有明显的变化规律。对于平稳的时间序列,理想情形是自相关函数在一定的条件下服从正态分布,当样本量条件下服从正态分布,当样本量n很大时,一般在自相关很大时,一般在自相关ACF图形中其值介于两条虚线之图形中其值介于两条虚线之间的概率为间的概率为95%;如果存在明显不在这两条直线之内

    29、的情况,说明序列存在;如果存在明显不在这两条直线之内的情况,说明序列存在k阶自相关(阶自相关(适合用适合用ARIMA模型),如果在),如果在r处之后,全部落入这个范围,说明序列中的数据与其自身处之后,全部落入这个范围,说明序列中的数据与其自身的前的前r个数据有相关性,即个数据有相关性,即k=r,序列表现出,序列表现出MA(r)的移动平均特性,的移动平均特性,pacf类似。类似。Spss操作操作:分析分析预测预测 自相关自相关互相关图互相关图 对两个互相对应的时间序列进行相关性分析的实用图形工具。互相关图是依据互相关函对两个互相对应的时间序列进行相关性分析的实用图形工具。互相关图是依据互相关函数

    30、绘制出来的。是不同时间序列间不同时期滞后序列的相关性。数绘制出来的。是不同时间序列间不同时期滞后序列的相关性。Spss操作操作:分析分析描述统计描述统计 互相关图互相关图时间序列的图形化观察工时间序列的图形化观察工具具时间序列分析教案附:附:spss自相关函数和偏自相关函数图具体分析自相关函数和偏自相关函数图具体分析 首先自相关(首先自相关(ACF)和偏自相关()和偏自相关(PACF)都是在时间序列模都是在时间序列模型中经常用来判断模型的工具,最好用滞后阶数的那个图来看比型中经常用来判断模型的工具,最好用滞后阶数的那个图来看比较直观,在较直观,在ARIMA(p,d,q)模型中,参数的选择:确定

    31、)模型中,参数的选择:确定p d q,首先要确定,首先要确定 d,答:看序列要不要差分后才能平稳。,答:看序列要不要差分后才能平稳。其次确定其次确定 AR、MA 还是还是ARMA?答:若平稳序列的偏相答:若平稳序列的偏相关函数是截尾的,而自相关函数是拖尾的,可断定序列适合关函数是截尾的,而自相关函数是拖尾的,可断定序列适合AR模型;若平稳序列的偏相关函数是拖尾的,而自相关函数是截尾模型;若平稳序列的偏相关函数是拖尾的,而自相关函数是截尾的,则可断定序列适合的,则可断定序列适合MA模型;若平稳序列的偏相关函数和自模型;若平稳序列的偏相关函数和自相关函数均是拖尾的,则序列适合相关函数均是拖尾的,则

    32、序列适合ARMA模型。模型。接下来,关键在于分清托尾、截尾的概念。答:相关函数接下来,关键在于分清托尾、截尾的概念。答:相关函数值在值在kq以后全部是以后全部是0,称为截尾性;如果随着滞后期,称为截尾性;如果随着滞后期k的增加,的增加,函数值呈现指数或正弦波衰减,趋于函数值呈现指数或正弦波衰减,趋于0,称为拖尾性。说白了,称为拖尾性。说白了,截尾就是前面只有孤立的长长一根,后面突然全没了。拖尾就是截尾就是前面只有孤立的长长一根,后面突然全没了。拖尾就是没有截干净的,后面杂七杂八还有。没有截干净的,后面杂七杂八还有。确定确定AR、MA 还是还是ARMA 后,第三,才是确定后,第三,才是确定p、q

    33、。答:。答:看拖尾部分,有几根在可信区间外,偏自相关确定看拖尾部分,有几根在可信区间外,偏自相关确定p,自相关确,自相关确定定q。时间序列分析教案v 时间序列的图形化观察和检验的基本操作时间序列的图形化观察和检验的基本操作 v 绘制序列图的基本操作绘制序列图的基本操作(1)选择菜单)选择菜单分析分析预测预测 序列图(自相关图)序列图(自相关图)。时间序列分析教案(2)将需绘图的序列变量选入)将需绘图的序列变量选入变量变量框中。框中。(3)在)在时间标签时间标签框中指定横轴(时间轴)标志变量。该标志框中指定横轴(时间轴)标志变量。该标志变量默认的是日期型变量。变量默认的是日期型变量。(4)在)在

    34、转换转换框中指定对变量进行怎样的变化处理。框中指定对变量进行怎样的变化处理。(5)单击)单击时间线时间线 按钮定义序列图中需要特别标注的时间点。按钮定义序列图中需要特别标注的时间点。(6)单击)单击格式格式按钮定义图形的格式,可选择横向或纵向序列按钮定义图形的格式,可选择横向或纵向序列图;对于单变量序列图,可选择绘制线图或面积图,还可选图;对于单变量序列图,可选择绘制线图或面积图,还可选择在图中绘制序列的均值线;对多变量的序列图,可选择将择在图中绘制序列的均值线;对多变量的序列图,可选择将不同变量在同一时间点上的点用直线连接起来。不同变量在同一时间点上的点用直线连接起来。时间序列分析教案序列图

    35、序列图时间序列的图形化观察时间序列的图形化观察时间序列分析教案 时间序列的预处理时间序列的预处理 v 时间序列预处理的目的和主要方法时间序列预处理的目的和主要方法 预处理的目的可大致归纳为两个方面:预处理的目的可大致归纳为两个方面:第一,使序列的特征体现得更加明显,利于分析模型的选择;第一,使序列的特征体现得更加明显,利于分析模型的选择;第二,使数据满足于某些特定模型的要求。第二,使数据满足于某些特定模型的要求。序列的预处理主要包括以下几个方面:序列的预处理主要包括以下几个方面:序列缺失数据的处理序列缺失数据的处理序列数据的变换处理序列数据的变换处理 主要包括序列的平稳化处理和序列的平滑处理等

    36、。均值平主要包括序列的平稳化处理和序列的平滑处理等。均值平稳化一般采用差分处理,方差平稳化一般用变换处理。稳化一般采用差分处理,方差平稳化一般用变换处理。时间序列分析教案 时间序列的平滑处理目的是为了消除序列中随机波动性影响。平滑处理时间序列的平滑处理目的是为了消除序列中随机波动性影响。平滑处理的方式很多,常用的有各种移动平均、移动中位数以及这些方法的各种的方式很多,常用的有各种移动平均、移动中位数以及这些方法的各种组合等。组合等。中心移动平均法中心移动平均法 计算以当前为中心的时间跨度计算以当前为中心的时间跨度k范围内数据的移动平均数。范围内数据的移动平均数。向前移动平均法向前移动平均法 若

    37、指定时间跨度为若指定时间跨度为k,则用当前值前面,则用当前值前面k个数据(注意:不包括当前值个数据(注意:不包括当前值)的平均值代替当前值。)的平均值代替当前值。移动中位数移动中位数 它以当前时间点为中心,根据指定的时间跨度它以当前时间点为中心,根据指定的时间跨度k计算中位数。计算中位数。时间序列的平滑处理时间序列的平滑处理时间序列分析教案v 时间序列缺失值处理的基本操作时间序列缺失值处理的基本操作序列缺失数据处理的基本操作序列缺失数据处理的基本操作(1)选择菜单)选择菜单转换转换替换缺失值替换缺失值。时间序列分析教案(2)把需处理的变量(序列)选择到)把需处理的变量(序列)选择到新变量新变量

    38、框中。框中。(3)在)在名称和方法名称和方法框中选择处理缺失值的处理方法。在框中选择处理缺失值的处理方法。在名称名称后输入处理新后输入处理新生成变量名,在生成变量名,在方法方法中选择处理缺失值的替代方法,并单击中选择处理缺失值的替代方法,并单击确定确定按钮。按钮。其中:其中:序列均值序列均值:表示整个序列的均值作为替代值。:表示整个序列的均值作为替代值。临近点的均值临近点的均值:表示利用邻近点的均值作为替代值。对此用:表示利用邻近点的均值作为替代值。对此用附近点的跨度附近点的跨度框指定数据段。在框指定数据段。在数数后输入数值后输入数值k,表示以缺失值为中心,前后分别选,表示以缺失值为中心,前后

    39、分别选取取k个数据点。这样最后填补的值就是由这个数据点。这样最后填补的值就是由这2k个数的平均数。也可选择个数的平均数。也可选择全部全部,作用同,作用同序列均值序列均值选项。选项。临近点的中位数临近点的中位数:表示利用邻近点的中位数作为替代值。数据段指定方法:表示利用邻近点的中位数作为替代值。数据段指定方法同上。同上。线性插值法线性插值法:表示用缺失值前后两时点数据的某种线性组合进行填补,是:表示用缺失值前后两时点数据的某种线性组合进行填补,是一种加权平均。一种加权平均。点处的线性趋势点处的线性趋势:表示利用回归拟合线的拟合值作为替代值。:表示利用回归拟合线的拟合值作为替代值。请注意,如果序列

    40、的第一个和最后一个数据为缺失值,只能利用序请注意,如果序列的第一个和最后一个数据为缺失值,只能利用序列均值和线性趋势值法处理,其他方法不适用。列均值和线性趋势值法处理,其他方法不适用。时间序列分析教案v 序列数据平滑处理的基本操作序列数据平滑处理的基本操作(1)选择菜单)选择菜单转换转换创建时间序列创建时间序列 时间序列分析教案(2)把待处理的变量选择到)把待处理的变量选择到新变量名称新变量名称框。框。(3)在)在名称和函数名称和函数框中选择数据变换法。在框中选择数据变换法。在名称名称后输入处理后输入处理后新生成的变量名,在后新生成的变量名,在函数函数中选择处理方法,在中选择处理方法,在顺序顺

    41、序后输入后输入相应的阶数,并单击相应的阶数,并单击确定确定按钮。其中的方法除前面介绍的几按钮。其中的方法除前面介绍的几种外,还包括:种外,还包括:累计求和累计求和:即对当前值和当前值之间的所有数据进行求和,:即对当前值和当前值之间的所有数据进行求和,生成原序列的累计值序列。生成原序列的累计值序列。滞后滞后:即对指定的阶数:即对指定的阶数k,用从当前值向前数到第,用从当前值向前数到第k个数值来个数值来代替当前值。这样形成的新序列将损失前代替当前值。这样形成的新序列将损失前k个数据。个数据。提前提前:与数据滞后正好相反,即指定的阶数:与数据滞后正好相反,即指定的阶数k,从当前值向后,从当前值向后数

    42、以第数以第k个数值来代替当前值。这样形成的新序列将损失后个数值来代替当前值。这样形成的新序列将损失后k个数据。个数据。时间序列分析教案时间序列模型举例时间序列模型举例 以某地区以某地区2005年年1月到月到2015年年4月的进出口总月的进出口总额数据为基础,建立预测模型,预测额数据为基础,建立预测模型,预测2015年年4月月后后5个月的进出口总额。个月的进出口总额。时间序列分析教案序列图序列图模型选择:模型选择:由于影响进出口总额的因素很多,且这些因素之间常常存在多重由于影响进出口总额的因素很多,且这些因素之间常常存在多重共线性,所以找出影响进出口总额的诸多因素并进行建模比较困难。由于金共线性

    43、,所以找出影响进出口总额的诸多因素并进行建模比较困难。由于金融和经济领域数据常常是自相关非平稳的,从进出口总额的自相关图容易看融和经济领域数据常常是自相关非平稳的,从进出口总额的自相关图容易看出,自相关函数值出,自相关函数值明显有不在明显有不在95%95%置信区间内(两条直线之间)的情况,说明置信区间内(两条直线之间)的情况,说明序列存在序列存在k k阶自相关性;另外从序列图容易看出,数据序列有明显的趋势性和阶自相关性;另外从序列图容易看出,数据序列有明显的趋势性和波动性且不平稳,波动性且不平稳,因而采用因而采用ARIMAARIMA模型进行预测比较合理而且精度较高。模型进行预测比较合理而且精度

    44、较高。自相关图自相关图ARIMA模型的确定模型的确定时间序列分析教案数据分析和建模阶数据分析和建模阶段段ARIMA预测模型步骤:分析预测模型步骤:分析预测预测创建模型,打开如下对话框创建模型,打开如下对话框在方法中选择专家在方法中选择专家建模器(无需自己确建模器(无需自己确定定ARIMA 模型的模型的p、d、q等各个参数,软等各个参数,软件自行优化给出),件自行优化给出),然后打开条件对话框然后打开条件对话框数据来源:数据来源:进出口总值进出口总值时间序列分析教案数据分析和建模阶数据分析和建模阶段段在专家建模器条件中选择在专家建模器条件中选择模型类型,本例选仅限模型类型,本例选仅限ARIMA模

    45、型并考虑季节性模型并考虑季节性因素,当前周期为因素,当前周期为s=12。时间序列分析教案数据分析和建模阶数据分析和建模阶段段统计量的设计如下图:统计量的设计如下图:R R方:拟合优度可描述方:拟合优度可描述模型的回归效果;参数模型的回归效果;参数估计可给出模型的相关估计可给出模型的相关参数;显示预测值可在参数;显示预测值可在输出窗口中显示预测值输出窗口中显示预测值。时间序列分析教案数据分析和建模阶数据分析和建模阶段段图表的设计如下图:图表的设计如下图:以图表的形式输出观察以图表的形式输出观察值、预测值、拟合值,值、预测值、拟合值,并绘制残差自相关图和并绘制残差自相关图和残差偏相关图,用以分残差

    46、偏相关图,用以分析拟合效果。析拟合效果。时间序列分析教案数据分析和建模阶数据分析和建模阶段段保存的设计如下图:保存的设计如下图:在数据编辑器中保存预在数据编辑器中保存预测值,及相应的置信区测值,及相应的置信区间,并给出残差(噪声间,并给出残差(噪声残值);并保存模型文残值);并保存模型文件为件为“进出口总额进出口总额.xml”.xml”。时间序列分析教案数据分析和建模阶数据分析和建模阶段段选项的设计如下图:选项的设计如下图:设计预测截止时间,本设计预测截止时间,本例为例为20152015年年1212月,并可月,并可修改置信区间(本例为修改置信区间(本例为默认)默认)时间序列分析教案运行结果运行

    47、结果由模型描述表可得序列模型的类型为由模型描述表可得序列模型的类型为ARIMA(0,1,1)()(0,1,1),从对),从对比图可看出拟合结果较好。比图可看出拟合结果较好。注:注:由于由于ARIMA模型的表达式比较复杂,在写论文时只要写模型类型便可模型的表达式比较复杂,在写论文时只要写模型类型便可。时间序列分析教案模型的评价(统计量的参数分析)模型的评价(统计量的参数分析)v平稳的平稳的R方和方和R方:显示固定的方:显示固定的R平方值。此统计量是序列中由模型解平方值。此统计量是序列中由模型解释的总变异所占比例的估计值(本例中释的总变异所占比例的估计值(本例中R 方方=0.938)。该值越高()

    48、。该值越高(最大值为最大值为 1.0),则模型拟合会越好。),则模型拟合会越好。v正太化的正太化的BIC:表示输出标准的:表示输出标准的BIC统计量,可用于不同预测模型优统计量,可用于不同预测模型优劣的比较,越小越好。劣的比较,越小越好。vSig.列给出了列给出了 Ljung-Box 统计量的显著性值,该检验是对模型中残统计量的显著性值,该检验是对模型中残差的随机检验;表示指定的模型是否正确。显著性值小于差的随机检验;表示指定的模型是否正确。显著性值小于0.05 表示表示残差不是随机的,则意味着所观测的序列中存在模型无法解释的结构残差不是随机的,则意味着所观测的序列中存在模型无法解释的结构。时

    49、间序列分析教案模型的评价(图表模型的评价(图表-拟合图拟合图)v 下图为原始序列和由模型得到的拟合值以及对未来下图为原始序列和由模型得到的拟合值以及对未来10个观测的预测图;看来拟合得还不错。个观测的预测图;看来拟合得还不错。时间序列分析教案模型的评价(图表模型的评价(图表-残差残差pacpac和和acfacf图图)v 下面再看剩下的残差序列是否还有什么模式。这可以由残差的下面再看剩下的残差序列是否还有什么模式。这可以由残差的acf(左左)和和pacf(右右)图来判断,可以看出它们没有什么模式或图来判断,可以看出它们没有什么模式或规律性,这说明拟合比较成功。规律性,这说明拟合比较成功。时间序列

    50、分析教案 当确定了最终选择的预测模型和方法后,就可以预测未来当确定了最终选择的预测模型和方法后,就可以预测未来了,在保存中作如下设定:了,在保存中作如下设定:分别设定:预测值输出,分别设定:预测值输出,95%95%置信度的上下限置信度的上下限。注意:注意:SPSS中文环境有个小中文环境有个小Bug,必须改一下名字!,必须改一下名字!预测的设计(保存)预测的设计(保存)时间序列分析教案预测的设定(选项)预测的设定(选项)在选项中,选择你的预测时间,预测期将根据在选项中,选择你的预测时间,预测期将根据你事先定义的数据时间格式填写。你事先定义的数据时间格式填写。时间序列分析教案预测结果预测结果上面就

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:时间序列分析教案课件.ppt
    链接地址:https://www.163wenku.com/p-4422710.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库