高中数学几种排列组合综合问题的解法课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《高中数学几种排列组合综合问题的解法课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 排列组合 综合 问题 解法 课件 下载 _其他_数学_高中
- 资源描述:
-
1、几种排列组合综合问题的解法2022-12-72从n个不同元素中,任取m个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.2.2.组合的定义组合的定义:从n个不同元素中,任取m个元素,并成一组,叫做从n个不同元素中取出m个元素的一个组合.3.3.排列数公式排列数公式:4.4.组合数公式组合数公式:1.1.排列的定义排列的定义:)!(!)1()2)(1(mnnmnnnnAmn排列与组合的区别与联系排列与组合的区别与联系:与顺序有关的与顺序有关的为排列问题为排列问题,与顺序无关的为组合问题与顺序无关的为组合问题.)!(!)1()2)(1(mnmnmmnnnnAACmmmnm
2、n2022-12-73例例1.7人排成一排人排成一排.甲、乙两人不相邻,有多少种不同的排法?甲、乙两人不相邻,有多少种不同的排法?解:解:分两步进行:分两步进行:几个元素不能相邻几个元素不能相邻时时,先排一般元素,先排一般元素,再让特殊元素插空再让特殊元素插空.第第1步,把除甲乙外的一般人排列:步,把除甲乙外的一般人排列:55A有=120种排法第第2步,将甲乙分别插入到不同的间隙或两端中步,将甲乙分别插入到不同的间隙或两端中(插空插空):26A有=30种插入法120 303600共有种排法 解决一些不相邻问题时,可以先排解决一些不相邻问题时,可以先排“一一般般”元素然后插入元素然后插入“特殊特
3、殊”元素,使问题得以元素,使问题得以解决解决.1.插空法:插空法:2022-12-74变变 学校组织老师学生一起看电影,同一排电影票12张。8个学生,4个老师,要求老师在学生之间,且老师互不相邻,共有多少种不同的坐法?解解 先排学生共有 种排法,然后把老师插入学生之间的空档,共有7个空档可插,选其中的4个空档,共有 种选法.根据乘法原理,共有的不同坐法为 种.88A47A4788AA结论结论1 1 插空法插空法:对于某两个元素或者几个元素要求不相邻的问题,可以用插入法.即先排好没有限制条件的元素,然后将有限制条件的元素按要求插入排好元素的空档之中即可.分析分析 此题涉及到的是不相邻问题,并且是
4、对老师有特殊的要求,因此老师是特殊元素,在解决时就要特殊对待.所涉及问题是排列问题.2022-12-75相邻元素的排列,可以采用相邻元素的排列,可以采用“局部到整体局部到整体”的的排法,即将相邻的元素局部排列当成排法,即将相邻的元素局部排列当成“一个一个”元素,元素,然后再进行整体排列然后再进行整体排列.2.捆绑法捆绑法例例2.6人排成一排人排成一排.甲、乙两人必须相邻甲、乙两人必须相邻,有多少种不的排法有多少种不的排法?解:解:(1)分两步进行:分两步进行:甲甲 乙乙第一步,把甲乙排列第一步,把甲乙排列(捆绑捆绑):55A有120种排法第二步,甲乙两个人的梱看作一个元素与其它的排队:第二步,
5、甲乙两个人的梱看作一个元素与其它的排队:22A有2种捆法2 120240共有种排法 几个元素必须相邻时几个元素必须相邻时,先先捆绑成一个元素,再与捆绑成一个元素,再与其它的进行排列其它的进行排列.2022-12-76变 5个男生3个女生排成一排,3个女生要排在一起,有多少种不同的排法?解 因为女生要排在一起,所以可以将3个女生看成是一个人,与5个男生作全排列,有 种排法,其中女生内部也有 种排法,根据乘法原理,共有 种不同的排法.结论2 捆绑法捆绑法:要求某几个元素必须排在一起的问题,可以用捆绑法来解决问题.即将需要相邻的元素合并为一个元素,再与其它元素一起作排列,同时要注意合并元素内部也可以
6、作排列.分析 此题涉及到的是排队问题,对于女生有特殊的限制,因此,女生是特殊元素,并且要求她们要相邻,因此可以将她们看成是一个元素来解决问题.66A33A3366AA2022-12-77例例4.5个人站成一排,甲总站在乙的右侧的有多少个人站成一排,甲总站在乙的右侧的有多少种站法?种站法?几个元素几个元素顺序一定顺序一定的排列问题,一般是先排列,再的排列问题,一般是先排列,再消去这几个元素的顺序消去这几个元素的顺序.或者,先让其它元素选取位置或者,先让其它元素选取位置排列,留下来的空位置自然就是顺序一定的了排列,留下来的空位置自然就是顺序一定的了.3.除法消序法除法消序法(留空法留空法)解法解法
7、1:将将5个人依次站成一排,有个人依次站成一排,有解法解法2:先让甲乙之外的三人从先让甲乙之外的三人从5个位置选出个位置选出3个站好,个站好,有有55A种站法,种站法,然后再消去甲乙之间的顺序数然后再消去甲乙之间的顺序数22A甲总站在乙的右侧的有站法总数为甲总站在乙的右侧的有站法总数为5355225 4 3AAA 35A种站法,留下的两个位置自然给甲乙有种站法,留下的两个位置自然给甲乙有1种站法种站法甲总站在乙的右侧的有站法总数为甲总站在乙的右侧的有站法总数为33551AA 2022-12-78变式:变式:如下图所示如下图所示,有有5横横8竖构成的方格图竖构成的方格图,从从A到到B只能上行或右
8、行只能上行或右行共有多少条不同的路线共有多少条不同的路线?解解:如图所示如图所示1234567将一条路经抽象为如下的一个将一条路经抽象为如下的一个排法排法(5-1)+(8-1)=11格格:其中必有四个其中必有四个和七个和七个组成组成!所以所以,四个四个和七个和七个一个排序就对应一条路经一个排序就对应一条路经,所以从所以从A到到B共有共有 5 14(5 1)(8 1)11CC条不同的路径条不同的路径.也可以看作是也可以看作是1,2,3,4,5,6,7,顺序一定的排列,顺序一定的排列,有有种排法种排法.11114747AAA2022-12-79 n个个 相同小球放入相同小球放入m(mn)个盒子里个
9、盒子里,要求每个要求每个盒子里至少有一个小球的放法等价于盒子里至少有一个小球的放法等价于n个相同小球个相同小球串成一串从间隙里选串成一串从间隙里选m-1个结点剪截成个结点剪截成m段段.例例4.某校准备参加今年高中数学联赛某校准备参加今年高中数学联赛,把把16个选手个选手名额分配到高三年级的名额分配到高三年级的1-4 个教学班个教学班,每班至少一个每班至少一个名额名额,则不同的分配方案共有则不同的分配方案共有_种种.4.隔板法:隔板法:解:解:问题等价于把问题等价于把16个相同小球放入个相同小球放入4个盒子里个盒子里,每个盒子至少有一个小球的放法种数问题每个盒子至少有一个小球的放法种数问题.将将
10、16个小球串成一串,截为个小球串成一串,截为4段有段有 315455C种截断法,对应放到种截断法,对应放到4个盒子里个盒子里.因此,不同的分配方案共有因此,不同的分配方案共有455种种.2022-12-710 n个个 相同小球放入相同小球放入m(mn)个盒子里个盒子里,要求每个要求每个盒子里至少有一个小球的放法等价于盒子里至少有一个小球的放法等价于n个相同小球个相同小球串成一串从间隙里选串成一串从间隙里选m-1个结点剪截成个结点剪截成m段段.变式:变式:某校准备参加今年高中数学联赛某校准备参加今年高中数学联赛,把把16个选个选手名额分配到高三年级的手名额分配到高三年级的1-4 个教学班个教学班
展开阅读全文