空间几何体的结构三视图直观图课件-.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《空间几何体的结构三视图直观图课件-.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 空间 几何体 结构 视图 直观图 课件
- 资源描述:
-
1、20222022年年1212月月7 7日星期三日星期三空空间间几几何何体体空间几何体的结构空间几何体的结构柱、锥、台、球的结构特征柱、锥、台、球的结构特征简单几何体的结构特征简单几何体的结构特征三视图三视图柱、锥、台、球的三视图柱、锥、台、球的三视图简单几何体的三视图简单几何体的三视图直观图直观图斜二测画法斜二测画法平面图形平面图形空间几何体空间几何体中心投影中心投影柱、锥、台、球的表面积与体积柱、锥、台、球的表面积与体积平行投影平行投影画图画图识图识图柱柱锥锥台台球球圆锥圆锥圆台圆台多面体多面体旋转体旋转体圆柱圆柱棱柱棱柱棱锥棱锥棱台棱台概念概念结构特征结构特征侧面积侧面积体积体积 球球概念
2、概念性质性质侧面积侧面积体积体积由上述几何体组合在一起形成的几何体称为由上述几何体组合在一起形成的几何体称为简单组合体简单组合体ABCDEABCDE HH 底底底底两个互相两个互相平行的面平行的面叫做棱柱叫做棱柱的的底底 两个侧面的两个侧面的公共边叫做公共边叫做棱柱的棱柱的侧棱侧棱 HH HH HH HH HH 棱柱的性质棱柱的性质(2 2)两个底面与平行于底面的平面的截面是全等的多边形。两个底面与平行于底面的平面的截面是全等的多边形。3 3)过不相邻的两条侧棱的截面是平行四边形。过不相邻的两条侧棱的截面是平行四边形。(1)侧棱都相等,侧面都是平行四边形。侧棱都相等,侧面都是平行四边形。直棱柱
3、的各个侧面都是矩形;直棱柱的各个侧面都是矩形;正棱柱的各个侧面都是全等的矩形。正棱柱的各个侧面都是全等的矩形。1、按侧棱是否和底面垂直分类按侧棱是否和底面垂直分类:棱柱棱柱斜棱柱斜棱柱直棱柱直棱柱正棱柱正棱柱其它直棱柱其它直棱柱2、按底面多边形边数分类按底面多边形边数分类:棱柱的分类棱柱的分类 三棱柱、四棱柱、三棱柱、四棱柱、五棱柱、五棱柱、四棱柱四棱柱平行六面体平行六面体长方体长方体直平行六面体直平行六面体正四棱柱正四棱柱正方体正方体底面变为底面变为平行四边形平行四边形侧棱与底面侧棱与底面垂直垂直底面是底面是矩形矩形底面为底面为正方形正方形侧棱与底面侧棱与底面边长相等边长相等课堂练习课堂练习
4、:1.下面的几何体中,哪些是棱柱?下面的几何体中,哪些是棱柱?有两个面互相平行,其余各面都是平行四边形有两个面互相平行,其余各面都是平行四边形的几何体是棱柱的几何体是棱柱.命题是否正确,命题是否正确,为什么?为什么?2.判断判断:【知识梳理知识梳理】棱锥棱锥 1 1、定义:定义:有一个面是多边形,其余各面是有一个公共顶点的有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫三角形,由这些面所围成的几何体叫棱锥棱锥。如果一个棱锥的底面是正多边形,并且顶点在底面如果一个棱锥的底面是正多边形,并且顶点在底面的射影是底面中心,这样的棱锥叫做的射影是底面中心,这样的棱锥叫做正棱锥
5、正棱锥。2 2、性质性质、正棱锥的性质、正棱锥的性质(1)(1)各侧棱相等,各侧面都是全等的等腰三角形。各侧棱相等,各侧面都是全等的等腰三角形。(2)(2)棱锥的高、斜高和斜高在底面上的射影组成一个直棱锥的高、斜高和斜高在底面上的射影组成一个直角三角形;棱锥的高、侧棱和侧棱在底面上的射影也角三角形;棱锥的高、侧棱和侧棱在底面上的射影也组成一个直角三角形。组成一个直角三角形。正棱锥性质正棱锥性质2棱锥的高、斜高和斜高在棱锥的高、斜高和斜高在底面的射影组成一个直角底面的射影组成一个直角三角形。棱锥的高、侧棱三角形。棱锥的高、侧棱和侧棱在底面的射影组成和侧棱在底面的射影组成一个直角三角形一个直角三角
6、形PARt PEORt POBRt PEBRt BEO棱台由棱锥截得而成,所以在棱台中也有类棱台由棱锥截得而成,所以在棱台中也有类似的直角梯形。似的直角梯形。CBEOD棱锥棱锥棱锥棱锥正四棱锥正四棱锥正三棱锥正三棱锥正四面体正四面体体积体积V VSh/3Sh/3顶点在底面正多边形的射影是底面的中心问题问题5:观察下列几何体,构成它的面有什么观察下列几何体,构成它的面有什么特点?与棱锥有何关系?特点?与棱锥有何关系?ABCDABCD1.1.定义:定义:用一个平行于棱锥底面的平面去截棱锥用一个平行于棱锥底面的平面去截棱锥,底底面与截面之间的部分是棱台面与截面之间的部分是棱台.侧面侧面C C1 1
7、B B1 1A A1 1D D1 1上底面上底面下底面下底面顶点顶点侧棱侧棱2.分类分类:由三棱锥,四棱锥,五棱锥,由三棱锥,四棱锥,五棱锥,截得的棱截得的棱台,分别叫做三棱台,四棱台,五棱台,台,分别叫做三棱台,四棱台,五棱台,3.表示表示:棱台棱台ABCD-A1B1C1D1 两个互相平行的面叫做底面,其中截面叫做棱台的两个互相平行的面叫做底面,其中截面叫做棱台的上上底面底面,棱锥底面叫做棱台的,棱锥底面叫做棱台的下底面下底面,其余各面叫,其余各面叫做棱台的做棱台的侧面侧面棱柱侧棱垂直于底面直棱柱底面是正多边形正棱柱棱锥底面为正多边形,顶点在底面的射影为正多边形的中心正棱锥正棱台 由正棱锥截
8、的的棱台 处理台体的思想方法是处理台体的思想方法是还台于锥还台于锥。概念概念性质性质侧面积侧面积体积体积 棱柱棱柱有两个面互相平行,有两个面互相平行,其余各面都是四边其余各面都是四边形,并且每相邻两形,并且每相邻两个四边形的公共边个四边形的公共边都互相平行,这些都互相平行,这些面围成的几何体叫面围成的几何体叫做棱柱。做棱柱。(1)(1)侧棱都相等:侧棱都相等:(2)(2)侧面都是平行侧面都是平行四边形:四边形:(3)(3)两个底面与平两个底面与平行底面的截面是全行底面的截面是全等的多边形;等的多边形;侧面展侧面展开图是开图是一组平一组平行四边行四边形形 棱锥棱锥一个面是多边形,一个面是多边形,
9、其余各面是有一个其余各面是有一个公共顶点的三角形,公共顶点的三角形,由这些面所围成的由这些面所围成的几何体叫做棱锥。几何体叫做棱锥。平行底面的截面与平行底面的截面与底面相似。底面相似。侧面展侧面展开图是开图是一组三一组三角形角形 棱台棱台用一个平行于棱锥用一个平行于棱锥底面的平面去截棱底面的平面去截棱锥,底面与截面之锥,底面与截面之间的部分叫作棱台间的部分叫作棱台(1)(1)上下两个底面上下两个底面互相平行;互相平行;(2)(2)侧棱的延长线侧棱的延长线相交于一点;相交于一点;侧面展侧面展开图是开图是一组梯一组梯形;形;有两个面互相平行,有两个面互相平行,其余各面都是四边其余各面都是四边形,并
10、且每相邻两形,并且每相邻两个四边形的公共边个四边形的公共边都互相平行,这些都互相平行,这些面围成的几何体叫面围成的几何体叫做棱柱。做棱柱。一个面是多边形,一个面是多边形,其余各面是有一个其余各面是有一个公共顶点的三角形,公共顶点的三角形,由这些面所围成的由这些面所围成的几何体叫做棱锥。几何体叫做棱锥。用一个平行于棱锥用一个平行于棱锥底面的平面去截棱底面的平面去截棱锥,底面与截面之锥,底面与截面之间的部分叫作棱台间的部分叫作棱台(1)侧棱都相等:侧棱都相等:(2)侧面都是平行侧面都是平行四边形:四边形:(3)两个底面与平两个底面与平行底面的截面是行底面的截面是全等的多边形;全等的多边形;平行底面
11、的截面平行底面的截面与底面相似。与底面相似。(1)上下两个底面上下两个底面互相平行;互相平行;(2)侧棱的延长线侧棱的延长线相交于一点;相交于一点;侧面展侧面展开图是开图是一组平一组平行四边行四边形。形。侧面展侧面展开图是开图是一组三一组三角形。角形。侧面展侧面展开图是开图是一组梯一组梯形;形;V=Sh13VSh旋转体旋转体圆柱圆柱 圆锥圆锥 圆台圆台 球球 分别以矩形、直角三角形的直角边、分别以矩形、直角三角形的直角边、直角梯形垂直于底边的腰所在的直线为旋直角梯形垂直于底边的腰所在的直线为旋转轴,其余各边旋转而成的曲面所围成的转轴,其余各边旋转而成的曲面所围成的几何体,几何体,分别叫做分别叫
12、做圆柱圆柱,圆锥圆锥,圆台。圆台。圆柱圆柱圆锥圆锥圆台圆台顶点顶点S SA AB BO O底面底面轴轴侧侧面面母母线线 以直角三角形的一条直角边所在直线为旋转轴以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫做圆锥。其余两边旋转形成的曲面所围成的几何体叫做圆锥。圆锥的结构特征圆锥的结构特征的结构特征的结构特征 以半圆的直径所在的直线为旋转轴,将半圆旋转所以半圆的直径所在的直线为旋转轴,将半圆旋转所形成的曲面叫作形成的曲面叫作球面球面,球面所围成的几何体叫作,球面所围成的几何体叫作球体球体,简称简称球球。球心球心半径半径直径直径O O球的基本属性:球的基本属性:球
展开阅读全文