固体物理习题解答综述课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《固体物理习题解答综述课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 固体 物理 习题 解答 综述 课件
- 资源描述:
-
1、固体物理学作业固体物理学作业第一章 思考题1、简述晶态、非晶态、单晶、多晶、准晶的特征和性质答:主要区别在微结构有序度。固体中微观组成粒子(原子、离子、分子)在空间排列有序,具有微米数量级以上的三维平移周期性,这种具有长程有序态的固体称为晶态固体(晶体),否则为非晶态。晶体中微观组成粒子空间排列有序存在于整个固体中,称为单晶体。多晶体由许多单晶体随机堆砌而成。单晶体,具有以下性质:(1)规则几何外形;(2)各向异性物理性质,(3)确定的熔点。多晶体不具有规则的外形,物理性质不表现各向异性。非晶体不具有确定的熔点。2、晶体结构可分成布拉菲格子和复式格子吗?第一章 思考题答:可以。以原子为结构参考
2、点,可以把晶体分成布拉菲格子和复式格子。任何晶体,以基元为结构参考点,都是布拉菲格子描述。任何化合物晶体,都可以复式格子描述?不是所有的单质晶体,都是布拉菲格子描述?单质晶体,以原子为结构参考点,也可以分成布拉菲格子和复式格子?3、引入倒格子有什么实际意义?对于一定的布拉菲格子,基矢选择不唯一,它所对应的倒基矢也不唯一,因而有人说一个布拉菲格子可以对应于几个倒格子,对吗?复式格子的倒格子也是复式格子吗?第一章 思考题答:引入倒格子概念,对分析和表述有关晶格周期性的各种问题非常有效,如:晶体X射线衍射,晶体周期函数的傅里叶变换。布拉菲格子不可以对应于几个倒格子。基矢选择不唯一,但定义的布拉菲格子
3、是唯一确定的;同样,倒基矢选择不唯一,但定义的倒格子是唯一确定的。因此,给定布拉菲格子对应唯一确定的倒格子。倒格子定义在布拉菲格子概念上,而非复式格子。表达晶体结构周期性,以基元为格点的布拉菲格子是唯一的。4、当描述同一晶面时,密勒指数(hkl)与晶面指数(h1h2h3)一定相同吗?第一章 思考题答:不一定相同。密勒指数和晶面指数都定义为晶面在给定坐标轴上的截距倒数互质整数比。但是,密勒指数是在晶胞基矢为坐标轴上定义的,而晶面指数是在原胞基矢为坐标轴上定义的。因此,只当晶胞基矢和原胞基矢一致时,同一晶面的密勒指数和晶面指数才能相同。一般情况下,同一晶面密勒指数(hkl)与晶面指数(h1h2h3
4、)不相同。由于简单立方结构的晶胞基矢和原胞基矢一致,因此,简单立方结构的同一晶面密勒指数(hkl)与晶面指数(h1h2h3)相同。5、试画出体心立方和面心立方(100)、(110)、(111)面上格点的分布图。第一章 思考题体心立方面心立方(100)(110)(111)6、怎样判断一个体系对称性的高低?讨论对称性有何物理意义。第一章 思考题答:一个物理体系对称性用其具有的对称操作集合来描述。一个体系具有的对称操作越多,其对称性就越高。在数学上,基本操作的集合构成“群”,每个基本操作称为群的一个元素。由于晶格周期性限制,描述晶体宏观对称性的“点群”只有32种。描述晶体微观对称性的“空间群”只有2
5、30种。一个物理体系,如知道其几何对称性,就可在一定程度上确定它的某些物理性质。例如,若原子结构具有中心反演对称性,则原子无固定偶极矩;若一个体系具有轴对称性,偶极矩必在对称轴上;若有对称面,偶极矩必在对称面上。由此可见,不必讨论体系结构细节,仅从体系的对称性,就可对其物理性质作出某些判断。对称理论已成为定性和半定量研究物理问题的重要方法。第一章 习题1.1 何谓布拉菲格子?画出NaCl晶格所构成的布拉菲格子,说明基元代表点构成的格子是面心立方晶体,每个原胞中含几个格点?解:由基元代表点-格点-形成的晶格称为布拉菲格子或布拉菲点阵。它的特征是每个格点周围的情况(包括周围的格点数目和格点配置的几
6、何方位等)完全相同。基元由相邻的一个Na+和一个Cl构成,基元代表点(如:Na+位置)构成面心立方晶格。每个原胞中含一个格点。第一章 习题1.2 在下面的例子中,其结构是不是布拉菲格子?如果是,写出它的基矢;如果不是,能否挑选合适的格点组成基元,使基元的重心构成布拉菲格子?(1)底心立方格子;(2)边心立方格子;(3)蜂窝二维格子。底心立方格子是简单四方格子边心立方格子PRQ蜂窝二维格子基元基元aijkkajiajiaaaa321)(2)(2不是布拉菲格子不是布拉菲格子a1a2a31.3 对于面心立方晶格,如果取晶胞的三边为基矢,某一族晶面的密勒指数 为(hkl),问,如果取原胞的三边为基矢,
7、该族晶面的晶面指数是多少?解:已知,面心立方晶格某晶面密勒指数(hkl),求该晶面指数(h1h2h3)。aijk。,晶面指数,密勒指数截距倒数的关系根据晶面指数是在基矢332211:hhhlkhaaacbaABCDkcjbiaaaa,晶胞基矢:)(2)(2)(2321jiaikakjaaaa,原胞基矢:a3abkbha33ha设晶面(hkl)在底面截线 0,DBDC0)()(333323333333khhhkhhhhkhabaaabaaaaba即:第一章 习题aijkABCDa3abkbha33ha晶面在底面截线kijab2 aaa,代入jbiaaa )(2 3jiaa和033332333kh
8、hhkhhabaaabaa DBDC求解022 2323233332333kkkabaaabaakhahhakhakhhhkhh得到,即,012121 33khhhkhkjijab2)(2 23aaa,hkhkhkh123,123hkh,2 3khh得到同理 ,033aa 2)(223,kijiaaaaa,21lkh22hlh第一章 习题1.4 如果基矢 a,b,c 构成正交晶系,试证明晶面族(hkl)的面间距为第一章 习题222)()()(1clbkahdhkl证明:设 n 为该晶面系的法线方向,密勒指数(hkl)与 n,a,b,c 及 d 有如下关系。)/(),cos(1lcdnc对于正交
9、晶系,)/(),cos(1hadna),/(),cos(1kbdnb1),cos(),cos(),cos(222ncnbna,1)()()(222222lcdkbdhad即,2222222222)()()()()()()()()(kbhalchalckblckbhad,222)()()(1clbkahd证毕。1.5 试求面心立方结构和体心立方结构具有最大面密度的晶面族,并写出计算这个最大面密度的表示式。第一章 习题解:由格点面密度 与面间距 d 关系式 hkl=dhkl,知晶体格点体密度 和面间距 d,可求晶面族(hkl)格点面密度表达式。已知,面心立方和体心立方晶胞格点体密度分别为 4/a3
10、 和 2/a3。密勒指数简单的晶面系,其面间距 d 较大,格点面密度也较大。比较(100),(110),(111)晶面,可知面心立方(111)晶面和体心立方(110)晶面的格点面密度最大。根据,222lkhadhkl2 110ad体心立方,有面心立方3 111ad21102232 aaa体心立方,面心立方2111334334 aaa表达式,因此,最大格点面密度321321/2 hhhhhhGd1.7 证明体心立方格子和面心立方格子互为倒格子。第一章 习题 证明:根据 BCC和 FCC 基矢表达式,)(2)(2)(2)(321jibikbkjbaaaBCC倒基矢)(2)(2)-(2)(321kj
11、iakjiakjiaaaaBCC 正基矢)(2)(2)(2)(321jiaikakjaaaaFCC 正基矢)(2)(2)-(2)(321kjibkjibkjibaaaFCC倒基矢)(2321321aaaaab要求同学通过矢量运算,证明得出结论:和倒格子基矢定义)(2321213aaaaab)(2321132aaaaab第四章 思考题1、能带理论作了哪些近似和假定?得到哪些结果?答:能带理论是近似理论。它作了绝热近似、平均场近似和周期势场假定。绝热近似视固体中原子核(离子实)静止不动,价电子在固定不变的离子实势场中运动。通过绝势近似将电子系统和原子核(离子实)系统分开考虑。平均场近似视固体中每个
12、电子所处的势场都相同,使每个电子所受势场只与该电子位置有关,而与其它电子位置无关。通过平均场近似使所有电子都满足同样的薛定鄂方程。通过绝热近似和平均场近似,将一个多粒子体系问题简化为单电子问题。绝热近似和平均场近似也称为单电子近似。周期势场假定则认为电子所受势场具有晶格平移周期性。通过以上近似和假定,最终将一个多粒子体系问题变成在晶格周期势场中的单电子的薛定鄂方程定态问题。第四章 思考题2、周期场是能带形成的必要条件吗?答:周期场是由布洛赫函数描述的能带结构的必要条件。布洛赫定理推导出周期场中单电子状态的一般属性(主要是能带结构,参见图4.2-1 一维能带结构的表示图式),而晶格周期势场是布洛
13、赫定理的前提条件。在晶体周期性结构(平移对称性)中,电子波函数(k)是布洛赫函数,能量本征值和本征函数在 k 空间具有倒格矢反演和周期性,电子波矢 k 是与平移对称性相联系的量子数。非晶态也具有相似的基本能带结构,即:导带、价带和禁带。但非晶态的电子态与晶态比较有本质区别。非晶态不存在周期性,因此 k 不再是具有类似特征的量子数。非晶态能带中电子态分扩展态和局域态二类。扩展态的电子为整个固体共有,可在整个固体内找到,在外场中运动类似晶体中电子;局域态的电子基本局限在某一区域,状态波函数只能在围绕某一不大的尺度内显著不为零,它们依靠声子协助,进行跳跃式导电。第四章 思考题3、按自由电子近似,禁带
14、产生的原因是什么?紧束缚近似呢?答:按自由电子近似,零级近似波函数是平面波,它在晶体中传播如同X射线。当波矢 k 不满足布拉格条件时,晶格的影响很弱,电子几乎不受阻碍地通过晶体。但当 k=n/a(处在布里渊区边界),波长 =2/k=2a/n 正好满足布拉格反射条件,受到晶格的全反射,反射波和入射波干涉形成驻波,使电子分布密度发生变化。一部分主要分布在离子实之间,受离子实吸引较弱,势能较高,一部分主要分布在离子实周围,受离子实吸引较强,势能较低。由此出现能隙。按紧束缚近似,原来孤立原子的每一能级,当原子相互接近组成晶体时,由于原子间的相互作用就构成一个能带,若原子间距离越小,原子波函数间交叠越多
展开阅读全文