书签 分享 收藏 举报 版权申诉 / 22
上传文档赚钱

类型2121直接开平方解一元二次方程课件.ppt

  • 上传人(卖家):晟晟文业
  • 文档编号:4400579
  • 上传时间:2022-12-06
  • 格式:PPT
  • 页数:22
  • 大小:549.50KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《2121直接开平方解一元二次方程课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2121 直接 开平 一元 二次方程 课件
    资源描述:

    1、直接开平方法直接开平方法解一元二次方程解一元二次方程你会解哪些方程,如何解的?你会解哪些方程,如何解的?二元、三元二元、三元一次方程组一次方程组一元一次方程一元一次方程一元二次方程一元二次方程消元消元降次降次思考:如何解一元二次方程思考:如何解一元二次方程1创设情境,导入新知创设情境,导入新知问题1经检验,经检验,5 5和和-5-5是方程的根,但是棱长不能是负值,是方程的根,但是棱长不能是负值,所以正方体的棱长为所以正方体的棱长为5dm.5dm.这种解法叫做什么这种解法叫做什么?直接开平方法直接开平方法5552515001021226xxxxxxdm,即,由此可得列方程,设正方体的棱长为一桶油

    2、漆可刷的面积为一桶油漆可刷的面积为1500dm 1500dm,李林用这桶,李林用这桶油漆恰好刷完油漆恰好刷完1010个同样的正方体形状的盒子的个同样的正方体形状的盒子的全部外表面,你能算出盒子的棱长吗?全部外表面,你能算出盒子的棱长吗?问题问题2解方程解方程 x 2=25,依据是什么?,依据是什么?解得解得x 1=5,x 2=-5平方根的意义平方根的意义请解下列方程:请解下列方程:x 2=3,2x 2-8=0,x 2=0,x 2=-2这些方程有什么共同的特征?这些方程有什么共同的特征?结构特征:方程可化成结构特征:方程可化成x 2=p的形式,的形式,平方根平方根的意义的意义降次降次(当(当 p

    3、0 时)时)px22推导求根公式推导求根公式平方根a82.如果 ,则 =。2(0)xa ax1.如果 ,则 就叫做 的 。2(0)xaaxa3.如果 ,则 =。264x x(1).2=4(2).21=0对于方程(1),可以这样想:2=4根据平方根的定义可知:是4的().=4即:=2 这时,我们常用1、2来表示未知数为的一元二次方程的两个根。方程 2=4的两个根为 1=2,2=2.平方根利用平方根的定义直接开平方求一元二利用平方根的定义直接开平方求一元二次方程的解的方法叫次方程的解的方法叫直接开平方法直接开平方法。一般地一般地,对于形如对于形如x2=d(d0)的方程的方程,根据平方根的定义根据平

    4、方根的定义,可解得可解得 这种解一元二次方程的方法叫做这种解一元二次方程的方法叫做.对于一元二次方程x2=d,如果d0,那么就可以用开平方法求它的根。当d0时,方程有两个不相等的根:当d=0时,方程有两个相等的根:dxdx21,021 xx1、利用直接开平方法解下列方程:(1).2=25(2).2900=0解:(1)2=25直接开平方,得=5 1=5,2=5(2)移项,得2=900直接开平方,得=301=30 2=30例1:用开平方法解方程 9x2=4解:两边同除以9,得942x利用开平方法,得32x所以,原方程的根是.32,3221xx例2:用开平方法解方程 3x2=-4解:两边同除以3,得

    5、342x 因为任何一个实数的平方根不可能是负数,所以原方程没有实数根。例3:用开平方法解方程 -7x2+21=0解:移项,得32x两边同除以-7,得2172 x利用开平方法,得3x所以,原方程的根是.3,321xx(1)方程x2=0.25的根是;(2)方程2x2=18的根是;(3)方程(x+1)2=1的根是.x1=0.5,x2=-0.5x1=3,x2=-3x1=0,x2=-2例4:怎样解方程 (x+1)2=16?解:利用开平方法,得4141xx或可得41x所以,原方程的根是.5,321xx上面这种解法中,实质上是把一个一元二次方程“降次”,转化为两个一元一次方程。用用解下列方程解下列方程:(1

    6、)3x227=0;(2)(x1)2=4(3)(2x3)2=73,3)1(21xx3,1)2(21xx273,273)3(21xx2、利用直接开平方法解下列方程:(1)(+1)24=0(2)12(2)29=0解方程:解方程:(x+3)=5这种方程怎样解?变形为变形为x210 x+25=9x210 x+16=0的形式(为非负常数)填空:(1)方程x2+x=0的根是 ;(2)x225=0的根是 。X1=0,x2=-1X1=5,x2=-51.直接开平方法的理论根据是平方根的定义平方根的定义 2.用直接开平方法可解形如2 2=a(=a(a a0)或(a)2=b(b0)类的一元二次方程。3.方程2=a(a

    7、0)的解为:=aab方程(a)2=b(b0)的解为:=小结中的两类方程为什么要加条件:小结中的两类方程为什么要加条件:a0,b0a0,b0呢?呢?1解方程:3x2+27=0得().(A)x=3 (B)x=-3 (C)无实数根 (D)方程的根有无数个2.方程(x-1)2=4的根是().(A)3,-3 (B)3,-1(C)2,-3 (D)3,-2_)(_)(_)(_)(22222222_21)4(_5)3(_8)2(_2)1(yyyyxxxxyyxx)(25225)(412411242它们之间有什么关系它们之间有什么关系?1.一般地一般地,对于形如对于形如x2=a(a0)的方程的方程,根据平方根的定义根据平方根的定义,可解得可解得 这种解一元二次方程的方法叫做这种解一元二次方程的方法叫做.a ax x,a ax x2 21 1

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2121直接开平方解一元二次方程课件.ppt
    链接地址:https://www.163wenku.com/p-4400579.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库