书签 分享 收藏 举报 版权申诉 / 100
上传文档赚钱

类型《核磁共振氢谱解析》课件.ppt

  • 上传人(卖家):晟晟文业
  • 文档编号:4393593
  • 上传时间:2022-12-05
  • 格式:PPT
  • 页数:100
  • 大小:1.30MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《《核磁共振氢谱解析》课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    核磁共振氢谱解析 核磁共振 解析 课件
    资源描述:

    1、核磁共振氢谱解析PPT课件1.核磁共振的基本原理核磁共振的基本原理 2.核磁共振仪与实验方法核磁共振仪与实验方法3.氢的化学位移氢的化学位移4.各类质子的化学位移各类质子的化学位移5.自旋偶合和自旋裂分自旋偶合和自旋裂分6.自旋系统及图谱分类自旋系统及图谱分类7.核磁共振氢谱的解析核磁共振氢谱的解析前言前言 过去60年,波谱学已全然改变了化学家、生物学家和生物医学家的日常工作,波谱技术成为探究大自然中分子内部秘密的最可靠、最有效的手段。NMR是其中应用最广泛研究分子性质的最通用的技术:从分子的三维结构到分子动力学、化学平衡、化学反应性和超分子集体、有机化学的各个领域。1945年 Purcell

    2、(哈佛大学)和 Bloch(斯坦福大学)发现核磁共振现象,他们获得1952年Nobel物理奖 1951年 Arnold 发现乙醇的NMR信号,及与结构的关系 1953年 Varian公司试制了第一台NMR仪器 NMR发展近二十多年发展近二十多年发展 高强超导磁场的NMR仪器,大大提高灵敏度和分辨率;脉冲傅立叶变换NMR谱仪,使灵敏度小的原子核能被测定;计算机技术的应用和多脉冲激发方法采用,产生二维谱,对判断化合物的空间结构起重大作用。英国英国R.R.ErnstR.R.Ernst教授因对二维谱的贡献而获得教授因对二维谱的贡献而获得19911991年的年的NobelNobel奖。奖。瑞士科学家库尔

    3、特瑞士科学家库尔特维特里希因维特里希因“发明了利用核磁共振技术测定溶发明了利用核磁共振技术测定溶液中生物大分子三维结构的方法液中生物大分子三维结构的方法”而获得而获得2002年诺贝尔化学奖。年诺贝尔化学奖。NMR谱的结构信息谱的结构信息 化学位移 偶合常数 积分高度1.核磁共振的基本原理核磁共振的基本原理原子核的磁矩原子核的磁矩 自旋核在磁场中的取向和能级自旋核在磁场中的取向和能级核的回旋和核磁共振核的回旋和核磁共振核的自旋弛豫核的自旋弛豫质量数与电荷数均为双数,如质量数与电荷数均为双数,如C12,O16,没有,没有自旋现象。自旋现象。I=0质量数为单数,如质量数为单数,如H1,C13,N15

    4、,F19,P31。I为半整数,为半整数,1/2,3/2,5/2质量数为双数,但电荷数为单数,如质量数为双数,但电荷数为单数,如H2,N14,I为整数,为整数,1,2I为自旋量子数为自旋量子数原子核的自旋、磁矩原子核的自旋、磁矩自旋角动量(PN),自旋量子数(I)I=0,1/2,1,3/2 磁矩(N*),核磁矩单位(N),核磁子;磁旋比(N)NNNIIg)1(NNNP自旋核在磁场中的取向和能级自旋核在磁场中的取向和能级 具有磁矩的核在外磁场中的自旋取向是量子化的,可用磁量子数m来表示核自旋不同的空间取向,其数值可取:m=I,I-1,I-2,-I,共有2I+1个取向。I=n/2 n=0,1,2,3

    5、-(取整数)一些原子核有自旋现象,因而具有角动量,原子核是带电的粒子,在自旋的同时将产生磁矩,磁矩和角动量都是矢量,方向是平行的。哪些原子核有自旋现象?实践证明自旋量子数I与原子核的质量数A和原子序数Z:A Z I 自旋形状 NMR信号 原子核 偶数 偶数 0 无自旋现象 无 12C,16O,32S,28Si,30Si 奇数 奇数或偶数 1/2 自旋球体 有 1H,13C,15N,19F,31P 奇数 奇数或偶数 3/2,5/2,-自旋惰球体 有 11B,17O,33S,35Cl,79Br,127I 偶数 奇数 1,2,3,-自旋惰球体 有 2H,10B,14N原子核的进动原子核的进动在磁场中

    6、,原子核的自旋取向有2I+1个。各个取向由一个自旋量子数m表示。002HHN自旋角速度,外磁场H0,进动频率磁旋比:1H=26753,2H=410 7,13C=6726弧度/秒 高斯 共振条件 原子核在磁场中发生能级分裂,在磁场的垂直方向上加小交变电场,如频率为v v射射,当v v射射等于进动频率,发生共振。低能态原子核吸收交变电场的能量,跃迁到高能态,称核磁共振。核磁共振的条件核磁共振的条件:E E=h vh v迴迴=h v h v射射=h h B BO O/2 /2 或或 v v射射=v v迴迴=B BO O/2/2 射频频率与磁场强度射频频率与磁场强度B Bo o是成正比的,在进行核磁共

    7、振实是成正比的,在进行核磁共振实验时,所用的磁强强度越高,发生核磁共振所需的射验时,所用的磁强强度越高,发生核磁共振所需的射频频率也越高。频频率也越高。要满足核磁共振条件,可通过二种方法来实现:频率扫描(扫频):固定磁场强度,改变射频频率 磁场扫描(扫场):固定射频频率,改变磁场强度 实际上多用后者。各种核的共振条件不同,如:在1.4092特斯拉的磁场,各种核的共振频率为:1H 60.000 MHZ 13C 15.086 MHZ 19F 56.444 MHZ 31P 24.288 MHZ对于1H 核,不同的频率对应的磁场强度:射频 40 MHZ 磁场强度 0.9400 特斯拉 60 1.409

    8、2 100 2.3500 200 4.7000 300 7.1000 500 11.7500核磁共振仪核磁共振仪分类:按磁场源分分类:按磁场源分:永久磁铁、电磁铁、超导磁场 按交变频率分按交变频率分:40,60,90,100,200,500,-,800 MHZ(兆赫兹),频率越高,分辨率越高 按射频源和扫描方式不同分按射频源和扫描方式不同分:连续波NMR谱仪(CW-NMR)脉冲傅立叶变换NMR谱仪(FT-NMR)NMR仪器的主要组成部件:仪器的主要组成部件:磁体:提供强而均匀的磁场 样品管:直径4mm,长度15cm,质量均匀的玻璃管 射频振荡器:在垂直于主磁场方向提供一个射频波照射样品 扫描发

    9、生器:安装在磁极上的Helmholtz线圈,提供一个附加可 变磁场,用于扫描测定 射频接受器:用于探测NMR信号,此线圈与射频发生器、扫描 发生器三者彼此互相垂直。PFT-NMR谱仪PFT-NMR谱仪与谱仪与CW谱仪主要区别:谱仪主要区别:信号观测系统,增加了脉冲程序器和数据采集、处理系统。各种核同时激发,发生共振,同时接受信号,得到宏观磁化强度的自由衰减信号(FID信号),通过计算机进行模数转换和FT变换运算,使FID时间函数变成频率函数,再经数模变换后,显示或记录下来,即得到通常的NMR谱图。FT-NMR谱仪特点谱仪特点:有很强的累加信号的能力,信噪比高(600:1),灵敏度高,分辨率好(

    10、0.45Hz)。可用于测定1H,13C,15N,19F,31P等核的一维和二维谱。可用于少量样品的测定。2.核磁共振仪与实验方法核磁共振仪与实验方法按磁场源分:永久磁铁、电磁铁、超导磁按交变频率分:40兆,60兆,90兆,100兆,220兆,250兆,300兆赫兹频率越高,分辨率越高交变频率与分辨率的关系交变频率与分辨率的关系核磁共振波谱的测定核磁共振波谱的测定样品样品:纯度高,固体样品和粘度大液体样品必须溶解。溶剂溶剂:氘代试剂(CDCl3,C6D6,CD3OD,CD3COCD3,C5D5N)标准标准:四甲基硅烷(CH3)4Si,缩写:TMS 优点:信号简单,且在高场,其他信号在低场,值为正

    11、值;沸点低(26。5 C),利于回收样品;易溶于有机溶剂;化学惰性 实验方法实验方法:内标法、外标法此外还有:六甲基二硅醚(HMDC,值为0.07ppm),4,4-二甲基-4-硅代戊磺酸钠(DSS,水溶性,作为极性化合物的内标,但三个CH2的 值为0.53.0ppm,对样品信号有影响)NMR Lock Solvents Acetone CD3COCD3 Chloroform CDCl3 Dichloro Methane CD2Cl2 Methylnitrile CD3CN Benzene C6D6 Water D2O Diethylether(DEE)(CD3CD2)2O Dimethylet

    12、her(DME)(CD3)2O N,N-Dimethylformamide(DMF)(CD3)2NCDO Dimethyl Sulfoxide(DMSO)CD3SOCD3 Ethanol CD3CD2OD Methanol CD3OD Tetrehydrofuran(THF)C4D8O Toluene C6D5CD3 Pyridine C5D5N Cyclohexane C6H12 图图3-5 乙醚的氢核磁共振谱乙醚的氢核磁共振谱 3.3.氢的化学位移氢的化学位移 原子核由于所处的化学环境不同,而在不同的共振磁场下显示吸原子核由于所处的化学环境不同,而在不同的共振磁场下显示吸收峰的现象。收峰的

    13、现象。化学等价化学等价分子中若有一组核,其化学位移严格相等,则这组核称为彼此化学等价的核。例如CH3CH2Cl中的甲基三个质子,它们的化学位移相等,为化学等价质子,同样亚甲基的二个质子也是化学等价的质子。化学等价化学等价l处于相同化学环境的原子处于相同化学环境的原子 化学等价原子化学等价原子l化学等价的质子其化学位移相同,仅出现一组化学等价的质子其化学位移相同,仅出现一组NMR 信号。信号。l化学不等价的质子在化学不等价的质子在 NMR 谱中出现不同的信号谱中出现不同的信号组。组。化学等价质子与化学不等价质子的判断化学等价质子与化学不等价质子的判断 -可通过对称操作或快速机制(如构象转换)可通

    14、过对称操作或快速机制(如构象转换)互换的质子是化学等价的。互换的质子是化学等价的。-不可通过对称操作或快速机制(构象转换)不可通过对称操作或快速机制(构象转换)互换的质子是化学不等价的。互换的质子是化学不等价的。-与手性碳原子相连的与手性碳原子相连的 CH2 上的两个质子是上的两个质子是化学不等价的。化学不等价的。对称操作对称操作对称轴旋转对称轴旋转其他对称操作其他对称操作(如对称面)(如对称面)等位质子等位质子化学等价质子化学等价质子对映异位质子对映异位质子非手性环境为化学等价非手性环境为化学等价手性环境为化学不等价手性环境为化学不等价CCHaHbClClCHaHbClClOH3CCH3H3

    15、CClHbClCH3HaCHaHbBrClOHbBrHaBrHaCH3CH3HbH3CClHbBrCH3HaCCHaHbClHcH3C CCH3CH3OCH3ababNO2HaHbHcHbHaCHCClH3CCH3HaHbABCDEFGHIJKL化学等价质子与化学不等价质子的判断化学等价质子与化学不等价质子的判断化学等价质子与化学不等价质子的判断化学等价质子与化学不等价质子的判断磁等价磁等价分子中若有一组核,它们对组外任何一个核都表现出相同大小的偶合作用,即只表现出一种偶合常数,则这组核称为彼此磁等价的核。例如:CH2F2中二个氢和二个氟任何一个偶合都是相同的,所以二个氢是磁等价的核,二个氟也

    16、是磁等价的核。屏蔽效应 化学位移的根源 磁场中所有自旋核产生感应磁场,方向与外加磁场相反或相同,使原子核的实受磁场降低或升高,即屏蔽效应。H核=HO(1-)其中H核表示氢核实际所受的磁场,为屏蔽常数分类:顺磁屏蔽,抗磁屏蔽化学位移的表示化学位移的表示:单位:单位ppm 标准:四甲基硅(标准:四甲基硅(TMS),),=0,(如以,(如以表示,表示,=10,=10+)661010标准样品标准标准HHHHH661010标准样品标准标准低场向左磁场强度向右高场影响化学位移的因素影响化学位移的因素诱导效应共轭效应各向异性效应Van der Waals效应氢键效应和溶剂效应 诱导效应:氢原子核外成键电子的

    17、电子云密度产生的屏诱导效应:氢原子核外成键电子的电子云密度产生的屏蔽效应。蔽效应。拉电子基团:去屏蔽效应,化学位移左移,即增大拉电子基团:去屏蔽效应,化学位移左移,即增大推电子基团:屏蔽效应,化学位移右移,即减小推电子基团:屏蔽效应,化学位移右移,即减小 /ppm 试比较下面化合物分子中试比较下面化合物分子中 Ha Hb Hc 值的大小。值的大小。b a c 电负性较大的原子,可减小电负性较大的原子,可减小H原子受到的屏蔽作用,引起原子受到的屏蔽作用,引起 H原子向低场移动。向低场移动的程度正比于原子的电负原子向低场移动。向低场移动的程度正比于原子的电负 性和该原子与性和该原子与H之间的距离。

    18、之间的距离。CH3F CH3OH CH3Cl CH3Br CH3I CH3-H 4.26 3.40 3.05 2.68 2.16 0.23 CH3CH2CH2Brc b a Ha 3.30 Hb 1.69 Hc 1.25 /ppmCH3-O-CH2-C-CH3CH3Cla b c 由于邻对位氧原子的存由于邻对位氧原子的存在,右图中双氢黄酮的在,右图中双氢黄酮的芳环氢芳环氢ab的化学位移为的化学位移为6.15ppm通常芳环氢化通常芳环氢化学位移大于学位移大于7ppm。共轭效应共轭效应各向异性效应各向异性效应芳环芳环 叁键叁键 羰基羰基 双键双键 单键单键 在分子中处于某一化学键的不同空间位置上的

    19、核受到不同的屏蔽作用在分子中处于某一化学键的不同空间位置上的核受到不同的屏蔽作用,这种现象称为这种现象称为各向异性效应各向异性效应,这是因为由电子构成的化学键在外磁场的作用下这是因为由电子构成的化学键在外磁场的作用下,产生一个各向异性产生一个各向异性的附加磁场的附加磁场,使得某些位置的核受到屏蔽使得某些位置的核受到屏蔽,而另一些位置上的核则为去屏蔽而另一些位置上的核则为去屏蔽.和和 键碳原子相连的键碳原子相连的H,其所受屏蔽作用小于烷基碳原子,其所受屏蔽作用小于烷基碳原子 相连的相连的H原子。原子。值顺序:值顺序:CO A rHH HCC HCC HC芳环环的上下方为屏蔽区,其它地方为去屏蔽区

    20、 叁键:键轴向为屏蔽区,其它为去屏蔽区。羰基平面上下各有一个锥形的屏蔽区,其它方向(尤其是平面内)为去屏蔽区。RCOH HCCH 9-10 1.8双键 CH3CH3 CH2=CH20.96 5.25A =1.27,=0.85 B =1.23,=0.72 C =1.17,=1.01单键 Van der Waals效应当两个质子在空间结构上非常靠近时,具有负电荷的电子云就会互相当两个质子在空间结构上非常靠近时,具有负电荷的电子云就会互相排斥,从而使这些质子周围的电子云密度减少,屏蔽作用下降,共振排斥,从而使这些质子周围的电子云密度减少,屏蔽作用下降,共振信号向低磁场位移,这种效应称为信号向低磁场位

    21、移,这种效应称为Van der Waals效应。效应。HbHcOHHaHbHcHaHO(ppm)()()Ha 4.68 3.92Hb 2.40 3.55Hc 1.10 0.88氢键与化学位移氢键与化学位移:绝大多数氢键形成后,质子化学位移移向低场。表现出相当大的去屏蔽效应.提高温度和降低浓度都可以破坏氢键.如下面化合物4个羟基的均可以形成氢键,按照氢键由弱到强的顺序,逐步增大。分子内氢键,其化学位移变化与溶液浓度无关,取决于分子内氢键,其化学位移变化与溶液浓度无关,取决于分子分子 本身结构。本身结构。OHORRRCOCH2CORRCCHOHCOR1116 ppm乙醇的羟基随浓度增加,分子间氢键

    22、增强,化学位移增大 溶剂效应溶剂效应:溶剂不同使化学位移改变的效应 溶剂效应的产生是由于溶剂的磁各向异性造成或者是由于不同溶剂极性不同,与溶质形成氢键的强弱不同引起的.4 各类质子的化学位移值各类质子的化学位移值各类质子的化学位移值范围 13 12 11 10 9 8 7 6 5 4 3 2 1 0 RCH2-O=C-CH2-C=C-CH2-CCCH2-CH2-CH2-X-CH2-O-CH2-NO2C=C-HAr-HRCHORCOOH4.1 饱和碳上质子的化学位移饱和碳上质子的化学位移 甲基在核磁共振氢谱中,甲基的吸收峰比较特征,容易辨认。一般根据邻接的基团不同,甲基的化学位移在0.74ppm

    23、之间.亚甲基和次甲基一般亚甲基和次甲基的吸收峰不象甲基峰那样特征和明显,往往呈现很多复杂的峰形,有时甚至和别的峰相重迭,不易辨认。亚甲基(-CH2-)的化学位移可以用Shoolery经验公式加以计算:=0.23+式中常数0.23是甲烷的化学位移值,是与亚甲基相连的取代基的屏蔽常数 4.2.不饱和碳上质子的化学位移不饱和碳上质子的化学位移 炔氢叁键的各向异性屏蔽作用,使炔氢的化学位移出现在1.6 3.4ppm范围内.烯氢烯氢烯氢的化学位移可用Tobey和Simon等人提出的经验公式来计算:=5.25+Z同+Z顺+Z反 式中常数5.25是乙烯的化学位移值,Z是同碳、顺式及反式取代基对烯氢化学位移的

    24、影响参数。芳环氢的化学位移值芳环氢的化学位移值芳环的各向异性效应使芳环氢受到去屏蔽影响,其化学位移在较低场。苯的化学位移为7.27ppm。当苯环上的氢被取代后,取代基的诱导作用又会使苯环的邻、间、对位的电子云密度发生变化,使其化学位移向高场或低场移动。芳环氢的化学位移可按下式进行计算;=7.27+Si 式中常数7.27是苯的化学位移,Si为取代基对芳环氢的影响.杂环芳氢的的化学位移值杂环芳氢的的化学位移值杂环芳氢的化学位移受溶剂的影响较大。一般位的杂芳氢的吸收峰在较低场 ONHSNNHN6.307.406.226.687.047.297.757.388.296.477.298.047.519.

    25、10呋喃吡咯噻吩吡啶吲哚喹啉(CDCl3)(CDCl3)(CDCl3)(DMSO)(DMSO)(DMSO)活泼氢的化学位移值活泼氢的化学位移值常见的活泼氢,如-OH、-NH-、-SH、-COOH等基团的质子,在溶剂中交换很快,并受测定条件如浓度、温度、溶剂的影响,值不 固定在某一数值上,而在一个较宽的范围内变化(表3-9)。活泼氢的峰形有一定特征,一般而言,酰胺、羧酸类缔合峰为宽峰,醇、酚类的峰形较钝,氨基,巯基的峰形较尖。用重水交换法可以鉴别出活泼氢的吸收峰,(加入重水后活泼氢的吸收峰消失)。活泼氢的化学位移活泼氢的化学位移化合物类型化合物类型(ppmppm)化合物类型化合物类型 (ppmp

    26、pm)ROH0.55.5RSO3H 1.11.2ArOH(缔合缔合)10.516RNH2,R2NH 0.43.5ArOH48ArNH2,Ar2NH 2.94.8RCOOH1013RCONH2,ArCONH2 56.5=NH-OH7.410.2RCONHR,ArCONHR 68.2R-SH0.92.5RCONHAr,7.89.4=C=CHOH(缔合缔合)1519 ArCONHAr 7.89.45 自旋偶合和自旋裂分自旋偶合和自旋裂分5.1 自旋自旋-自旋偶合与自旋自旋裂分自旋偶合与自旋自旋裂分 5.2 n+1规律规律5.3 偶合常数偶合常数自旋核的核磁矩可以通过成键电子影响邻近磁核是引起自旋自旋

    27、偶合的根本原因。磁性核在磁场中有不同的取向,产生不同的局部磁场,从而加强或减弱外磁场的作用,使其周围的磁核感受到两种或数种不同强度的磁场的作用,故在两个或数个不同的位置上产生共振吸收峰。这种由于自旋-自旋偶合引起谱峰裂分的现象称为自旋-自旋裂分(Spin-Spin Splitting)。n+1规律:规律:当某组质子有n个相邻的质子时,这组质子的吸收峰将裂分成n+1重峰。n数数 二项式展开式系数二项式展开式系数 峰形峰形0 1 单峰单峰111 二重峰二重峰21 2 1 三重峰三重峰3 1 3 3 1 四重峰四重峰4 1 4 6 4 1 五重峰五重峰5 1 5 10 10 5 1 六重峰六重峰严格

    28、来说,n+1规律应该是2nI+1规律,对氢原子核(H1)来说,因它的I=1/2,所以就变成了规律.n+1规律只适合于互相偶合的质子的化学位移差远大于偶合常数,规律只适合于互相偶合的质子的化学位移差远大于偶合常数,即即vJ时的一级光谱。而且在实际谱图中互相偶合的二组峰强度时的一级光谱。而且在实际谱图中互相偶合的二组峰强度还会出现内侧高,外侧低的情况,称为向心规则。利用向心规则,还会出现内侧高,外侧低的情况,称为向心规则。利用向心规则,可以找到吸收峰间互相偶合的关系。可以找到吸收峰间互相偶合的关系。5.3 偶合常数偶合常数 偶合常数(用J表示)也是核磁共振谱的重要数据,它与化合物的分子结构关系密切

    29、。偶合常数的大小与外磁场强度无关。由于磁核间的偶合作用是通过化学键成键电子传递的,因而偶合常数的大小主要与互相偶合的二个磁核间的化学键的数目及影响它们之间电子云分布的因素(如单键、双键、取代基的电负性、立体化学等)有关。偶合常数,单位为赫(Hz)对于氢谱,根据偶合质子间相隔化学键的数目可分为同碳偶合(2J),邻碳偶合(3J)和远程偶合(相隔4个以上的化学键)。一般通过双数键的偶合常数(2J,4J等)为负值,通过单数键的偶合常数(3J,5J等)为正值。同碳质子的偶合常数(同碳质子的偶合常数(2J,J同同)以2J或J同表示,2J一般为负值,但变化范围较大 影响2J的因素主要有:取代基电负性会使2J

    30、的绝对值减少,即向正的方向变化。对于脂环化合物,环上同碳质子的2J值会随键角的增加而减小,即向负的方向变化。烯类化合物末端双键质子的2J一般在+3-3Hz 之间,邻位电负性取代基会使2J向负的方向变化.邻碳质子的偶合常数(邻碳质子的偶合常数(3J,J邻邻)饱和型邻位偶合常数;烯型邻位偶合常数饱和型邻位偶合常数饱和型邻位偶合常数在饱和化合物中,通过三个单键(H-C-C-H)的偶合叫饱和型邻位偶合。开链脂肪族化合物由于键自由旋转的平均化,使3J数值约为7Hz。3J的大小与双面夹角、取代基电负性、环系因素有关。烯型邻位偶合常数烯型邻位偶合常数烯氢的邻位偶合是通过二个单键和一个双键(H-C=C-H)发

    31、生作用的。由于双键的存在,反式结构的双面夹角为180o,顺式结构的双面夹角为0o,因此J反大于J顺.芳氢的偶合常数芳氢的偶合常数芳环氢的偶合可分为邻、间、对位三种偶合,偶合常数都为正值,邻位偶合常数比较大,一般为6.09.4 Hz(三键),间位为0.83.1Hz(四键),对位小于0.59Hz(五键)。一般情况下,对位偶合不易表现出来。苯环氢被取代后,特别是强拉电子或强推电子基团的取代,使苯环电子云分布发生变化,表现出J邻、J间和J对的偶合,使苯环质子吸收峰变成复杂的多重峰。远程偶合远程偶合超过三个键的偶合称为远程偶合(long-range coupling),如芳烃的间位偶合和对位偶合都属于远

    32、程偶合。远程偶合的偶合常数都比较小,一般在03Hz之间。常见的远程偶合有下列几种情况:丙烯型偶合高丙烯偶合 炔及迭烯 折线性偶合 W型偶合 质子与其他核的偶合质子与其他核的偶合质子与其它磁性核如13C、19F、31P的偶合 6 自旋系统及图谱分类自旋系统及图谱分类 核的等价性质核的等价性质 化学等价:磁等价 快速机制自旋系统的分类 图谱的分类几种常见的自旋系统 化学等价和磁等价化学等价和磁等价化学等价:化学位移严格相等的核称为化学等价核,指化学化学等价:化学位移严格相等的核称为化学等价核,指化学位移相同的原子核。位移相同的原子核。磁等价:一组核对组外任何核表现出相同大小的偶合作用,磁等价:一组

    33、核对组外任何核表现出相同大小的偶合作用,即只表现出一个偶合常数,着组核称为磁等价核。即只表现出一个偶合常数,着组核称为磁等价核。磁全同:既化学等价又磁等价的磁全同:既化学等价又磁等价的原子核,称为原子核,称为磁全同核磁全同核 。自旋系统的分类自旋系统的定义 把几个互相偶合的核,按偶合作用的强弱,分成不同的自旋系统,系统内部的核互相偶合,但不和系统外的任何核相互作用。系统与系统之间是隔离的.COOCH2CH3H3C自旋系统的命名自旋系统的命名 分子中两组相互干扰的核,它们之间的化学位移差小于或近似于偶合常数J时,则这些化学位移近似的核分别以A、B、C字母表示。若其中某种类的磁全同的核有几个,则在

    34、核字母的右下方用阿拉伯字母写上标记,如Cl-CH2-CH2-COOH中间二个CH2构成A2B2系统。分子中两组互相干扰的核,它们的化学位移差远大于它们之间的偶合常数(J),则其中一组用A、B、C表示,另一组用x、y、z表示。若核组内的核为磁不等价时,则用A、A、B、B加以区别。图谱的分类图谱的分类核磁共振图谱可分为一级谱图和二级图谱,或称为初级图谱和高级图谱。一级图谱:一级图谱:条件:条件:/J 6 组内各个质子均为磁全同核组内各个质子均为磁全同核特点:特点:1。磁全同质子之间,虽然。磁全同质子之间,虽然 J 0,但对图谱不发生影响,但对图谱不发生影响 Cl-CH2CH2Cl 只表现出一个峰只

    35、表现出一个峰 2。裂分后峰的数目。裂分后峰的数目,符合符合n+1规律(对于规律(对于I=1/2的核的核)3。多重峰的中心即为化学位移值多重峰的中心即为化学位移值 4。峰型大体左右对称,各峰间距离等于偶合常数峰型大体左右对称,各峰间距离等于偶合常数J 5。各裂分峰各裂分峰 的强度比符合的强度比符合(a+b)n展开式各项系数比展开式各项系数比 一级自旋-自旋裂分规则 当I=1/2时,自旋裂分峰数目服从n+1规则。1.n+1规则:当某基团上的氢有n个相邻的氢时,它将显示n+1个峰,各峰的高度比基本为二项式的各项系数比若这些相邻的氢处在不同的环境中时,(如一种环境中氢若这些相邻的氢处在不同的环境中时,

    36、(如一种环境中氢n个,另个,另一种环境中氢一种环境中氢n个个),则裂分峰将显示(),则裂分峰将显示(n+1)()(n+1)个峰。)个峰。则应考虑偶合常数的大小。则应考虑偶合常数的大小。对如下结构:对如下结构:C CHnCHnCHn Habcdabc以以Hd为观察核:为观察核:1)Jad=Jbd=Jcd,则,则Nd=(na+nb+nc)+1。2 2)JadJbdJcd 则则Hd核共振峰的数目为:核共振峰的数目为:Nd=(na+1)(nb+1)(nc+1)3)JadJbdJcd,从外表上看:,从外表上看:Nd=(na+nb+nc)+1。7 核磁共振氢谱的解析核磁共振氢谱的解析 7.1 解析谱图的步

    37、骤 7.2 辅助图谱分析的一些方法7.1 解析谱图的步骤1 检查谱图是否规则。检查谱图是否规则。2识别杂质峰、溶剂峰、旋转边带、识别杂质峰、溶剂峰、旋转边带、13C卫星峰等非待测样品的卫星峰等非待测样品的 信号。信号。3从积分曲线,算出各组信号的相对面积,再参考分子式中氢从积分曲线,算出各组信号的相对面积,再参考分子式中氢原子数目,来决定各组峰代表的质子数目。原子数目,来决定各组峰代表的质子数目。4从各组峰的化学位移,偶合常数及峰形,根据它们与化学结从各组峰的化学位移,偶合常数及峰形,根据它们与化学结构的关系,推出可能的结构单元。构的关系,推出可能的结构单元。5识别谱图中的一级裂分谱,读出识别

    38、谱图中的一级裂分谱,读出J值,验证值,验证J值是否合理。值是否合理。6解析二级图谱,必要时可用位移试剂,双共振技术等使谱图解析二级图谱,必要时可用位移试剂,双共振技术等使谱图简化,用于解析复杂的谱峰。简化,用于解析复杂的谱峰。mult.氘 代 溶 剂CDCl3(CD3)2CO(CD3)2SOC6D6CD3CNCD3ODD2OC5D5N残余溶剂峰7.262.052.507.161.943.314.797.207.578.72水峰brs1.562.843.330.402.134.874.794.96CHCl3s7.268.028.326.157.587.90(CH3)2COs2.172.092.0

    39、91.552.082.152.22(CH3)2SOs2.622.522.541.682.502.652.71C6H6s7.367.367.377.157.377.33 CH3CNs2.102.052.071.551.962.032.06CH3OHCH3,sOH,s3.491.093.313.123.164.013.073.282.163.343.34C5H5NCH(2),mCH(3),mCH(4),m 8.627.297.688.587.357.768.587.397.798.536.666.988.577.337.738.537.447.858.527.457.878.727.207.57C

    40、H3COOC2H5CH3,sCH2,qCH3,t2.054.121.261.974.051.201.994.031.171.653.890.921.974.061.202.014.091.242.074.141.24CH2Cl2s5.305.635.764.275.445.49n-hexaneCH3,tCH2,m0.881.260.881.280.861.250.891.240.891.280.901.29C2H5OHCH3,tCH2,q1.253.721.123.571.063.440.963.341.123.541.193.601.173.657.2 辅助图谱分析的一些方法1.使用高磁场的仪器2.活泼氢反应3.溶剂效应4.位移试剂5.双共振去偶7.3 谱图解析示例 某化合物的分子式为C11H20O4,其HNMR中,为0.79,1.23,1.86,4.14处分别有三重峰,三重峰,四重峰和四重峰,积分高度比为:3:3:2:2;红外光谱显示含有酯基,试推测分子结构。1)有四组化学等同核。2)由积分比3:3:2:2;及分子中有20个质子,表明分子结构对称,有2个甲基,2个甲基及2个亚甲基及另2个亚甲基,由偶合知有两个相同的CH3CH2。3)除去两个相同的酯基COO,剩下一个C,为季碳。4)该化合物应为5)根据A和B的结构计算化学位移,取两种亚甲基中较大的比较:AB因此结构为A。

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:《核磁共振氢谱解析》课件.ppt
    链接地址:https://www.163wenku.com/p-4393593.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库