书签 分享 收藏 举报 版权申诉 / 30
上传文档赚钱

类型251-平面几何中的向量方法(使用)解析课件.ppt

  • 上传人(卖家):晟晟文业
  • 文档编号:4393051
  • 上传时间:2022-12-05
  • 格式:PPT
  • 页数:30
  • 大小:2.25MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《251-平面几何中的向量方法(使用)解析课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    251 平面几何 中的 向量 方法 使用 解析 课件
    资源描述:

    1、 2.5 平面向量应用举例2.5.1 平面几何中的向量方法复习复习 3已知a(5,10),b(3,4),c(2,3),且clakb,则l_,k_.由于向量的线性运算和数量积运算具有鲜明由于向量的线性运算和数量积运算具有鲜明的几何背景的几何背景,平面几何图形的许多性质平面几何图形的许多性质,如平移、如平移、全等、相似、长度、夹角等都可以由向量的线性全等、相似、长度、夹角等都可以由向量的线性运算及数量积表示出来,因此,可用向量方法解运算及数量积表示出来,因此,可用向量方法解决平面几何中的一些问题,下面我们通过几个具决平面几何中的一些问题,下面我们通过几个具体实例,说明向量方法在平面几何中的运用体实

    2、例,说明向量方法在平面几何中的运用.1向量在平面几何中的应用向量在平面几何中的应用主要有以下方面:(1)证明线段相等、平行,常运用向量加法的三角形法则、平行四边形法则,有时也用到向量减法的意义(2)证明线段平行、三角形相似,判断两直线(或线段)是否平行,常运用向量平行(共线)的条件:_abab(或x1y2x2y10)(3)证明线段的垂直问题,如证明四边形是矩形、正方形,判断两直线(线段)是否垂直等,常运用向量垂直的条件:_(4)求与夹角相关的问题,往往利用向量的夹角公式_.(5)向量的坐标法,对于有些平面几何问题,如长方形、正方形、直角三角形等,建立直角坐标系,把向量用坐标表示,通过代数运算解

    3、决几何问题abab0(或x1x2y1y20)思考思考1 1 如图,在平行四边形如图,在平行四边形ABCDABCD中,已知中,已知AB=2AB=2,AD=1AD=1,BD=2BD=2,那么对角线,那么对角线ACAC的长是否的长是否确定?确定?A AB BC CD D思考思考2:2:在平行四边形在平行四边形ABCDABCD中,设向量中,设向量 则向量则向量 等于什么?向量等于什么?向量 等于什等于什么?么?ABa,ADbACDB DBab,ACab.A AB BC CD D2222222,4,24,24,1.2abababaa bbaa bba b 由得=4即():2,1,-23,?aba ba

    4、bAC利用如何求思考等于多少?22222|()226.ACababaa bbaa bb A AB BC CD D例例1.1.平行四边形是表示向量加法与减法的平行四边形是表示向量加法与减法的几何模型,如图几何模型,如图2.5-12.5-1,你能发现平行四边形对角线的长度与两条你能发现平行四边形对角线的长度与两条邻边长度之间有何关系吗?邻边长度之间有何关系吗?A AB BC CD DACAB AD,DBAB AD,.ABa ADbACab DBab 设,则图图2.5-12.5-1222()()2(1)ACAC ACababa aa bb ab baa bb 2222(2)DBaa bb 同理222

    5、222(1)(2)2()2().得 ACDBabABAD 平行四边形两条对角线长的平方和等平行四边形两条对角线长的平方和等于两条邻边长的平方和的两倍于两条邻边长的平方和的两倍.(1 1)建立平面几何与向量的联系,)建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;将平面几何问题转化为向量问题;(2 2)通过向量运算,研究几何元素)通过向量运算,研究几何元素之间的关系,如距离、夹角等问题;之间的关系,如距离、夹角等问题;(3 3)把运算结果)把运算结果“翻译翻译”成几何元成几何元素素.用向量方法解决平面几何问题的用向量方法解决

    6、平面几何问题的“三步曲三步曲”:总结总结几何问题向量化几何问题向量化 向量运算关系化向量运算关系化向量关系几何化向量关系几何化变式变式 2 2、例例2.2.如图如图2.5-22.5-2,ABCDABCD中,点中,点E E、F F分别是分别是ADAD、DCDC边的中点,边的中点,BEBE、BFBF分别与分别与ACAC交于交于R R、T T两点,你能发现两点,你能发现ARAR、RTRT、TCTC之间的关系吗?之间的关系吗?A AB BD DE EF FR RT TC C猜想:猜想:AR=RT=TCAR=RT=TC图图2.5-22.5-2ABa,ADb,ARr,ACab.解设:则由于由于 与与 共线

    7、,故设共线,故设因为因为ARA C rn(a b),nR,又因为又因为 共线,共线,所以设所以设EREB 与1ERmEBm(ab).2 因为因为 所以所以ARAEER ,11rbm(ab).221122()()因此,n abbm ab 1EBABAEab,2 A AB BD DE EF FR RT TC C图图2.5-22.5-2m1(nm)a(n)b0.2即a,b 向 量不 共 线,nm0m1n0.2,nm.1解得:=3111ARAC,TCAC,RTAC.333ATRTTC.所以同理于是故 利用待定系数法,结合向利用待定系数法,结合向量共线定理和平面向量基本定量共线定理和平面向量基本定理,将

    8、问题转化为求理,将问题转化为求m m、n n的值,的值,是处理线段长度关系的一种常是处理线段长度关系的一种常用手段用手段.总结总结AOBCFEGNML .GNFMELNMLGFE于一点且互相平分交、边的中点,求证:线段分别是所在、如图点变式 3、TAOBCFEGNML .rOC,qOB,pOA设)rqp(41)OGON(21OTTTTELMFNG21,则:、分别为的中点、又设 T:解),rqp(41OT1同理:)rqp(41OT2例例3.3.若正方形若正方形OABCOABC的边长为的边长为1 1,点,点D D、E E分别为分别为ABAB、BCBC的中点,试求的中点,试求cosDOE.A AB

    9、BC CO Oxy解:解:以以O O为坐标原点,以为坐标原点,以OAOA、OCOC所在所在的直线为坐标轴建立如图所示的直角的直线为坐标轴建立如图所示的直角坐标系,坐标系,分析:分析:建立坐标系,利用向量的坐建立坐标系,利用向量的坐标运算求夹角标运算求夹角.探究二(角度问题)探究二(角度问题)E ED D11(1),(,1)2211(1),(,1)22DEODOE 则,cos1111422.55522OD OEDOEOD OE A AB BC CO OxyE ED D 建立适当的坐标系,利用向量运建立适当的坐标系,利用向量运算的坐标形式,可使解题思路明确,算的坐标形式,可使解题思路明确,过程简洁

    10、过程简洁.总结总结如右图所示,在正方形ABCD中,P为对角线AC上任一点,PEAB,PFBC,垂足分别为E,F,连接DP、EF,求证:DPEF.1.ABCDAB BC=0AB=DCABCD .A.B.C.D.在四边形中,且,则四边形是()平行四边形矩形菱形正方形BAB=DCABCDAB BC=0ABBCABC=90.ABCD.由可知,四边形为平行四边形,又,即四边形解:为矩形析OBOC)OBOC-2OA)=0(OBOAOC-OA)0CB(ABAC)0CB(2AM)0(MBCCBAMABC.(,CB,解,为的中点),为等腰:三角形析2 22OABC(OBOC)(OBOC2OA)0ABCA.B.C.D.(01济南高一检测)是三角形内一点,且则三角形的形状为()等腰三角形 等边三角形直角三角形 以上皆错A A1.1.用向量方法证明几何问题时用向量方法证明几何问题时,首先选取首先选取恰当的基底恰当的基底,用来表示待研究的向量用来表示待研究的向量,在在此基础上进行运算此基础上进行运算,进而解决问题进而解决问题.2.2.要掌握向量的常用知识要掌握向量的常用知识共线;垂直;共线;垂直;模;夹角;向量相等模;夹角;向量相等.变式变式4 4、

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:251-平面几何中的向量方法(使用)解析课件.ppt
    链接地址:https://www.163wenku.com/p-4393051.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库