最新数学沪科版九年级上册第23章解直角三角形2311锐角的三角函数-正切课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《最新数学沪科版九年级上册第23章解直角三角形2311锐角的三角函数-正切课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 最新 数学 沪科版 九年级 上册 23 直角三角形 2311 锐角 三角函数 正切 课件 下载 _九年级上册_沪科版(2024)_数学_初中
- 资源描述:
-
1、第二十三章第二十三章 解直角三角形解直角三角形23.1 23.1 锐角的三角函数锐角的三角函数第第1 1课时课时 锐角的三角函锐角的三角函 数数正切正切1课堂讲解课堂讲解正切函数的定义、正切函数的定义、正切函数的应用、正切函数的应用、坡度和坡角坡度和坡角2课时流程课时流程逐点逐点导讲练导讲练课堂课堂小结小结作业作业提升提升 汽车免不了爬坡,爬坡能力是衡量汽车性能的重要指汽车免不了爬坡,爬坡能力是衡量汽车性能的重要指标之一标之一.汽车的爬坡能力是指汽车在通常情况下满载时所能汽车的爬坡能力是指汽车在通常情况下满载时所能爬越的最大坡度爬越的最大坡度.怎样描述坡面的坡度(倾斜程度)呢?怎样描述坡面的坡
2、度(倾斜程度)呢?(来自教材)(来自教材)1知识点知识点正切函数的定义正切函数的定义知知1 1导导在下图中,有两个直角三角形,直角边在下图中,有两个直角三角形,直角边AC与与A1C1表示水平面,表示水平面,斜边斜边AB与与A1B1分别表示两个不同的坡面,坡面分别表示两个不同的坡面,坡面AB和和A1B1哪哪个更陡?你是怎样判断的?个更陡?你是怎样判断的?知知1 1导导类似地,在下图中,坡面类似地,在下图中,坡面AB和和A1B1哪个更陡?你又是哪个更陡?你又是怎样判断的?怎样判断的?知知1 1导导如图,在锐角如图,在锐角A的一边任取一点的一边任取一点B,过点过点B作另一边的垂线作另一边的垂线BC,
3、垂足为,垂足为C,得到,得到RtABC;再任取一点;再任取一点B1,过点过点B1作另一边的垂线作另一边的垂线B1C1,垂足,垂足为为C1,得到另一个,得到另一个RtAB1C1这样,我们可以得到无数个直角三角形,这些直角三角形这样,我们可以得到无数个直角三角形,这些直角三角形都相似都相似.在这些直角三角形中,锐角在这些直角三角形中,锐角A的对边与邻边之比的对边与邻边之比 究竟有怎样的关系?究竟有怎样的关系?222111,ACCBACCBACBC(来自教材)(来自教材)1.正切的定义:正切的定义:如图,在如图,在RtABC中,如果锐角中,如果锐角A确定,那么确定,那么 A的对边与邻边的比便随之确定
4、,的对边与邻边的比便随之确定,这个比叫做这个比叫做A的正切,的正切,记作记作tan A,即即tan A 要点精析:要点精析:(1)tan A表示锐角表示锐角A的正切,一般省略的正切,一般省略“”,但当但当用三个字母表示角时,不能省略用三个字母表示角时,不能省略“”如如 tanABC.(2)A的的范围与范围与tan A的范围:的范围:0A90;tan A0.(3)tan A随着随着 A的增大而增大,的增大而增大,A越接近越接近90,tan A 的值的值就增加得越快,就增加得越快,tan A可以等于任何一个正数可以等于任何一个正数(4)正切值的大小由锐角的度数决定,与其在哪个直角三角形中正切值的大
5、小由锐角的度数决定,与其在哪个直角三角形中无关无关知知1 1讲讲.ACBCAA 的邻边的邻边的对边的对边(来自(来自点拨点拨)知知1 1讲讲2.拓展:拓展:根据正切的定义可得互余的两角的正切值的关系为:根据正切的定义可得互余的两角的正切值的关系为:若若AB90,则,则tan Atan B1.如图,在如图,在RtABC中,中,C90,a,b,c分别为分别为A,B,C的对边,则的对边,则tan A ,tan B ,tan Atan B 1.3.易错警示:易错警示:正切是一个比值,不是一个角度,正切是一个比值,不是一个角度,所以它没有单位所以它没有单位baababba(来自(来自点拨点拨)【例【例1
6、 1 】如图,在如图,在RtABC中,中,C90,知知1 1讲讲(来自(来自点拨点拨)1517 BCAB,则则tan A_导引导引:由正切定义可知由正切定义可知tan A ,在本题已知两边之比,在本题已知两边之比 的情况下,可运用参数法,由的情况下,可运用参数法,由 ,可设,可设BC 15a,AB17a,从而可用勾股定理表示出第三边,从而可用勾股定理表示出第三边AC ,再用正切的定义求解得,再用正切的定义求解得tan ABCAC1715ABBC 22(17)(15)8aaa15.8BCAC 158总总 结结知知1 1讲讲(来自(来自点拨点拨)直角三角形中求锐角正切值的方法:直角三角形中求锐角正
7、切值的方法:(1)(1)若已知两直角边,直接利用正切的定义求解;若已知两直角边,直接利用正切的定义求解;(2)(2)若已知一直角边及斜边,另一直角边未知,可先利用若已知一直角边及斜边,另一直角边未知,可先利用 勾股定理求出未知的直角边,再利用正切的定义求解勾股定理求出未知的直角边,再利用正切的定义求解1 1 (包头包头)在在RtABC中,中,C90,若斜边,若斜边AB是直角边是直角边 BC的的3倍,则倍,则tan B的值是的值是()知知1 1练练(来自(来自典中点典中点)在在ABC中,中,AC5,BC4,AB3,那么下列各式正确,那么下列各式正确的是的是()Atan A Btan ACtan
展开阅读全文