2022年九年级中考复习数学函数综合 试题.docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《2022年九年级中考复习数学函数综合 试题.docx》由用户(meimeiwenku)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年九年级中考复习数学函数综合 试题 2022 九年级 中考 复习 数学 函数 综合 下载 _考试试卷_数学_初中
- 资源描述:
-
1、中考试题之函数综合题1. 如图,已知点A(tan,0),B(tan,0)在x轴正半轴上,点A在点B的左边,、 是以线段AB为 斜边、顶点C在x轴上方的RtABC的两个锐角(1)若二次函数yx2kx(22kk2)的图象经过A、B两点,求它的解析式;(2)点C在(1)中求出的二次函数的图象上吗?请说明理由AMyxNQO2已知抛物线经过点(1)求抛物线的解析式(2)设抛物线顶点为,与轴交点为求的值(3)设抛物线与轴的另一个交点为,求四边形的面积3如图9,抛物线y=ax2+8ax+12a与轴交于A、B两点(点A在点B的左侧),抛物线上另有一点在第一象限,满足 ACB为直角,且恰使OCAOBC.(1)
2、求线段OC的长.(2) 求该抛物线的函数关系式(3) 在轴上是否存在点P,使BCP为等腰三角形?若存在,求出所有符合条件的P点的坐标;若不存在,请说明理由.4已知函数y=和y=kx+l(kO) (1)若这两个函数的图象都经过点(1,a),求a和k的值;(2)当k取何值时,这两个函数的图象总有公共点?5已知如图,矩形OABC的长OA=,宽OC=1,将AOC沿AC翻折得APC。(1)填空:PCB=_度,P点坐标为( , );(2)若P,A两点在抛物线y= x2+bx+c上,求b,c的值,并说明点C在此抛物线上;(3)在(2)中的抛物线CP段(不包括C,P点)上,是否存在一点M,使得四边形MCAP的
3、面积最大?若存在,求出这个最大值及此时M点的坐标;若不存在,请说明理由.6.如图,二资助函数的图象经过点M(1,2)、N(1,6).(1)求二次函数的关系式.(2)把RtABC放在坐标系内,其中CAB = 90,点A、B的坐标分别为(1,0)、(4,0),BC = 5。将ABC沿x轴向右平移,当点C落在抛物线上时,求ABC平移的距离.7.如图,在平面直角坐标系中,两个函数的图象交于点A。动点P从点O开始沿OA方向以每秒1个单位的速度运动,作PQx轴交直线BC于点Q,以PQ为一边向下作正方形PQMN,设它与OAB重叠部分的面积为S.(1)求点A的坐标.(2)试求出点P在线段OA上运动时,S与运动
4、时间t(秒)的关系式.(3)在(2)的条件下,S是否有最大值?若有,求出t为何值时,S有最大值,并求出最大值;若没有,请说明理由.(4)若点P经过点A后继续按原方向、原速度运动,当正方形PQMN与OAB重叠部分面积最大时,运动时间t满足的条件是_.8已知一次函数y=+m(O0)与y轴交于点C,C点关于抛物线对称轴的对称点为C点.(1)求C点、C点的坐标(可用含m的代数式表示)Oyx(2)如果点Q在抛物线的对称轴上,点P在抛物线上,以点C、C、P、Q为顶点的四边形是平行四边形,求Q点和P点的坐标(可用含m的代数式表示)(3)在(2)的条件下,求出平行四边形的周长.11抛物线y=3(x-1)+1的
5、顶点坐标是( )A(1,1) B(-1,1) C(-1,-1) D(1,-1)12如图,OAB是边长为的等边三角形,其中O是坐标原点,顶点B在轴正方向上,将OAB折叠,使点A落在边OB上,记为A,折痕为EF.(1)当AE/轴时,求点A和E的坐标;(2)当AE/轴,且抛物线经过点A和E时,求抛物线与轴的交点的坐标;(3)当点A在OB上运动,但不与点O、B重合时,能否使AEF成为直角三角形?若能,请求出此时点A的坐标;若不能,请你说明理由.13.已知抛物线y=x4x+1.将此抛物线沿x轴方向向左平移4个单位长度,得到一条新的抛物线.求平移后的抛物线解析式;若直线y=m与这两条抛物线有且只有四个交点
6、,求实数m的取值范围;若将已知的抛物线解析式改为y=ax+bx+c(a0,b0),并将此抛物线沿x轴方向向左平移 -个单位长度,试探索问题14.直线分别与轴、轴交于B、A两点求B、A两点的坐标;把AOB以直线AB为轴翻折,点O落在平面上的点C处,以BC为一边作等边BCD求D点的坐标15已知抛物线y=ax2+bx+c经过A,B,C三点,当x0时,其图象如图所示(1)求抛物线的解析式,写出抛物线的顶点坐标;(2)画出抛物线y=ax2+bx+c当x016如图,在平面直角坐标系中,O为坐标原点,B(5,0),M为等腰梯形OBCD底边OB上一点,OD=BC=2,DMC=DOB=60(1)求直线CB的解析
7、式:(2)求点M的坐标;(3)DMC绕点M顺时针旋转(3060)后,得到D1MC1(点D1,C1依次与点D,C对应),射线MD1交直线DC于点E,射线MC1交直线CB于点F,设DE=m,BF=n求m与n的函数关系式17如图,边长为1的等边三角形OAB的顶点O为坐标原点,点B在x轴的正半轴上,点A在第一象限,动点D在线段OA上移动(不与O,A重合),过点D作DEAB,垂足为E,过点D作DFOB,垂足为F。点M,N,P,Q分别是线段BE,ED,DF,FB的中点。连接MN,NP,PQ,QM。记OD的长为t .(1) 当时,分别求出点D和点E的坐标;(2) 当时,求直线DE的函数表达式;(3)如果记四
展开阅读全文