高频电路原理与分析(第六版)曾兴雯章课件2.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《高频电路原理与分析(第六版)曾兴雯章课件2.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高频 电路 原理 分析 第六 曾兴雯章 课件
- 资源描述:
-
1、第2章 高频电路基础第2章高频电路基础与系统问题2.1 高频电路中的元器件 2.2 高频电路中的组件 2.3 阻抗变换与阻抗匹配 2.4 电子噪声与接收灵敏度2.5 非线性失真与动太范围2.6 高频电路的电磁兼容 思考题与习题 第2章 高频电路基础 由上一章的介绍可知,各种无线电设备都包含有处理高频信号的功能电路,如高频放大器、振荡器、调制与解调器等。虽然这些电路的工作原理和实际电路都有各自的特点,但是它们之间也有一些共同之处。这些共同之处就是高频电路的基础,主要包括高频电路的基本元器件和基本组件等。各种高频电路基本上是由无源元件、有源器件和高频基本组件等组成的,而这些元器件和基本组件绝大部分
2、是相同的,它们与用于低频电路的基本元器件没有本质上的差异,主要需要注意这些元器件在高频运用时的特殊性,当然也有一些高频电路所特有的器件。在高频多个单元电路中常用的两个重要功能是选频滤波与阻抗变换,振荡回路、石英谐振器与集中选频滤波器等组件都具有这两个功能,高频变压器、传输线变压器及阻抗匹配器则具有较好的阻抗变换能力。第2章 高频电路基础 高频电路的主要任务是功率的传输与处理,而功率的传输与处理又与阻抗匹配直接相关,或者说,优化功率的传输与处理的充要条件是高频电路模块间的输入与输出阻抗的共轭匹配。因此,阻抗变换与阻抗匹配是高频系统的关键问题。高频系统的两个重要指标是在小信号状态时的噪声系数和在大
3、信号工作时的非线性失真。电子噪声存在于各种电子电路和系统中,噪声系数与电子噪声密切相关,了解电子噪声的概念对理解某些高频电路和系统的性能非常有用,因此,电子噪声与接收灵敏度、非线性失真与动态范围,以及高频电路系统的电磁兼容问题都是高频电路的重要问题。第2章 高频电路基础 高频信号会产生许多低频信号所没有的效应,主要是分布参数效应、趋肤效应和辐射效应。电子元器件的高频特性主要就是由这些效应引起的。集总参数元件是指一个独立的局域性元件,能够在一定的频率范围内提供特定的电路性能。而随着频率提高到射频,任何元器件甚至导线都要考虑分布参数效应和由此产生的寄生参数,如导体间、导体或元件与地之间、元件之间的
4、杂散电容,连接元件的导线的电感和元件自身的寄生电感等。由于分布参数元件的电磁场分布在附近空间,其特性也会受到周围环境的影响,分析和设计都相当复杂。2.1 高频电路中的元器件第2章 高频电路基础 趋肤效应是指当频率升高时,电流只集中在导体的表面,导致有效导电面积减小,交流电阻可能远大于直流电阻,从而使导体损耗增加,电路性能恶化。辐射效应是指信号泄漏到空间中,这就使得信号源或要传输的信号能量不能全部输送到负载上,产生能量损失和电磁干扰。辐射效应还会引起一些耦合效应,使得高频电路的设计、制作、调试和测量等都非常困难。第2章 高频电路基础2.1.1 高频电路中的元件各种高频电路基本上是由有源器件、无源
5、元件和无源网络组成的。高频电路中使用的元器件与在低频电路中使用的元器件基本相同,但要注意它们在高频使用时的高频特性。高频电路中的元件主要是电阻(器)、电容(器)和电感(器),它们都属于无源的线性元件。高频电缆、高频接插件和高频开关等由于比较简单,这里不加讨论。高频电路中完成信号的放大、非线性变换等功能的有源器件主要是二极管、晶体管和集成电路。第2章 高频电路基础1 电阻器一个实际的电阻器,在低频时主要表现为电阻特性,但在高频使用时不仅表现有电阻特性的一面,而且还表现有电抗特性的一面。电阻器的电抗特性反映的就是其高频特性。一个电阻R的高频等效电路如图2-1所示,其中,CR为分布电容,LR为引线电
6、感,R为电阻。分布电容和引线电感越小,表明电阻的高频特性越好。电阻器的高频特性与制作电阻的材料、电阻的封装形式和尺寸大小有密切关系。一般说来,金属膜电阻比碳膜电阻的高频特性要好,而碳膜电阻比线绕电阻的高频特性要好;表面贴装(SMD)电阻比引线电阻的高频特性要好;小尺寸的电阻比大尺寸的电阻的高频特性要好。第2章 高频电路基础图 2-1 电阻的高频等效电路 频率越高,电阻器的高频特性表现越明显。在实际使用时,要尽量减小电阻器高频特性的影响,使之表现为纯电阻。第2章 高频电路基础2.电容器由介质隔开的两导体即构成电容。作为电路元件的电容器一般只考虑其电容量值(标称值),在理论上也只按电容量来处理。但
7、实际上一个电容器的等效电路却如图2-2(a)所示。其中,电阻RC为极间绝缘电阻,它是由于两导体间的介质的非理想(非完全绝缘)所致,通常用损耗角或品质因数QC来表示;电感LC为分布电感或(和)极间电感,小容量电容器的引线电感也是其重要组成部分。第2章 高频电路基础图2-2 电容器的高频等效电路(a)电容器的等效电路;(b)电容器的阻抗特性第2章 高频电路基础理想电容器的阻抗为1/(jC),如图2-2(b)虚线所示,其中,f 为工作频率,=2f。但实际的电容器在高频运用时的阻抗频率特性如图2-2(b)实线所示,呈V形特性,而且其具体形状与电容器的种类和电容量的不同有关。由此可知,每个电容器都有一个
8、自身谐振频率SRF(Self Resonant Frequency)。当工作频率小于自身谐振频率时,电容器呈正常的电容特性,但当工作频率大于自身谐振频率时,电容器将等效为一个电感。第2章 高频电路基础3.电感器高频电感器与普通电感器一样,电感量是其主要参数。电感量L产生的感抗为jL,其中,为工作角频率。高频电感器一般由导线绕制(空心或有磁芯、单层或多层)而成(也称电感线圈),由于导线都有一定的直流电阻,所以高频电感器具有直流电阻R。把两个或多个电感线圈靠近放置就可组成一个高频变压器。第2章 高频电路基础工作频率越高,趋肤效应越强,再加上涡流损失、磁芯电感在磁介质内的磁滞损失以及由电磁辐射引起的
9、能量损失等,都会使高频电感的等效电阻(交流电阻)大大增加。一般地,交流电阻远大于直流电阻,因此,高频电感器的电阻主要指交流电阻。但在实际中,并不直接用交流电阻来表示高频电感器的损耗性能,而是引入一个易于测量、使用方便的参数品质因数Q来表征。品质因数Q定义为高频电感器的感抗与其串联损耗电阻之比。Q值越高,表明该电感器的储能作用越强,损耗越小。因此,在中短波段和米波波段,高频电感可等效为电感和电阻的串联或并联。第2章 高频电路基础若工作频率更高,电感内线圈匝与匝之间及各匝与地之间的分布电容的作用就十分明显,等效电路应考虑电感两端总的分布电容,它应与电感并联。与电容器类似,高频电感器也具有自身谐振频
10、率SRF。在SRF上,高频电感的阻抗的幅值最大,而相角为零,如图2-3所示。第2章 高频电路基础 图 2-3 高频电感器的自身谐振频率SRF第2章 高频电路基础2.1.2 高频电路中的有源器件从原理上看,用于高频电路的各种有源器件,与用于低频或其它电子线路的器件没有什么根本不同。它们是各种半导体二极管、晶体管以及半导体集成电路,这些器件的物理机制和工作原理,在有关课程中已详细讨论过,只是由于工作在高频范围,对器件的某些性能要求更高。随着半导体和集成电路技术的高速发展,能满足高频应用要求的器件越来越多,也出现了一些专门用途的高频半导体器件。第2章 高频电路基础1.二极管半导体二极管在高频中主要用
11、于检波、调制、解调及混频等非线性变换电路中,工作在低电平。因此主要用点接触式二极管和表面势垒二极管(又称肖特基二极管)。两者都利用多数载流子导电机理,它们的极间电容小、工作频率高。常用的点接触式二极管(如2AP系列),工作频率可到100200 MHz,而表面势垒二极管,工作频率可高至微波范围。第2章 高频电路基础另一种在高频中应用很广的二极管是变容二极管,其特点是电容随偏置电压变化。我们知道,半导体二极管具有PN结,而PN结具有电容效应,它包括扩散电容和势垒电容。当PN结正偏时,扩散效应起主要作用;而当PN结反偏时,势垒电容将起主要作用。利用PN结反偏时势垒电容随外加反偏电压变化的机理,在制作
12、时用专门工艺和技术经特殊处理而制成的具有较大电容变化范围的二极管就是变容二极管。变容二极管的结电容Cj与外加反偏电压u之间呈非线性关系。第2章 高频电路基础变容二极管在工作时处于反偏截止状态,基本上不消耗能量,噪声小,效率高。将它用于振荡回路中,可以作成电调谐器,也可以构成自动调谐电路等。变容管若用于振荡器中,可以通过改变电压来改变振荡信号的频率。这种振荡器称为压控振荡器(VCO)。压控振荡器是锁相环路的一个重要部件。电调谐器和压控振荡器也广泛用于电视接收机的高频头中。具有变容效应的某些微波二极管(微波变容管)还可以进行非线性电容混频、倍频。第2章 高频电路基础还有一种以P型、N型和本征(I)
13、型三种半导体构成的PIN二极管,它具有较强的正向电荷储存能力。它的高频等效电阻受正向直流电流的控制,是一电可调电阻。它在高频及微波电路中可以用作电可控开关、限幅器、电调衰减器或电调移相器。第2章 高频电路基础2.晶体管与场效应管(FET)在高频中应用的晶体管仍然是双极晶体管和各种场效应管,这些管子比用于低频的管子性能更好,在外形结构方面也有所不同。第2章 高频电路基础高频晶体管有两大类型:一类是作小信号放大的高频小功率管,对它们的主要要求是高增益和低噪声;另一类为高频功率放大管,除了增益外,要求其在高频有较大的输出功率。目前双极型小信号放大管,工作频率可达几千兆赫兹,噪声系数为几分贝。小信号的
14、场效应管也能工作在同样高的频率,且噪声更低。一种称为砷化镓的场效应管,其工作频率可达十几千兆赫兹以上。在高频大功率晶体管方面,在几百兆赫兹以下频率,双极型晶体管的输出功率可达十几瓦至上百瓦。而金属氧化物场效应管(MOSFET),甚至在几千兆赫兹的频率上还能输出几瓦功率。第2章 高频电路基础有关晶体管和场效应管的高频等效电路、性能参数及分析方法将在第 3 章中进行较为详细的描述。第2章 高频电路基础3.集成电路用于高频的集成电路的类型和品种要比用于低频的集成电路少得多,主要分为通用型和专用型两种。目前通用型的宽带集成放大器,工作频率可达一二百兆赫兹,增益可达五六十分贝,甚至更高。用于高频的晶体管
15、模拟相乘器,工作频率也可达一百兆赫兹以上。随着集成技术的发展,也生产出了一些高频的专用集成电路(ASIC)。其中包括集成锁相环、集成调频信号解调器、单片集成接收机以及电视机中的专用集成电路等。第2章 高频电路基础由于各种有源器件的基本原理在有关前修课程中已经讨论过,而它们的具体应用在本书各章中又将详细讨论,这里只对高频电路中有源器件的应用作一概括性的综述,下面将着重介绍和讨论用于高频中的无源网络。第2章 高频电路基础 高频电路中的无源组件或无源网络主要有高频振荡(谐振)回路、高频变压器、谐振器与各种滤波器等,它们完成信号的传输、频率选择及阻抗变换等功能。高频电路中的其它组件,如平衡调制(混频)
16、器、正交调制(混频)器、移相器、匹配器与衰减器、分配器与合路器、定向耦合器、隔离器与缓冲器、高频开关与双工器等,其功能和实现方式各异。2.2 高频电路中的组件第2章 高频电路基础2.2.1 高频振荡回路高频振荡回路是高频电路中应用最广的无源网络,也是构成高频放大器、振荡器以及各种滤波器的主要部件,在电路中完成阻抗变换、信号选择等任务,并可直接作为负载使用。下面分简单振荡回路、抽头并联振荡回路和耦合振荡回路三部分来讨论。第2章 高频电路基础1.简单振荡回路振荡回路就是由电感和电容串联或并联形成的回路。只有一个回路的振荡电路称为简单振荡回路或单振荡回路。简单振荡回路的阻抗在某一特定频率上具有最大或
17、最小值的特性称为谐振特性,这个特定频率称为谐振频率。简单振荡回路具有谐振特性和频率选择作用,这是它在高频电子线路中得到广泛应用的重要原因。第2章 高频电路基础1)串联谐振回路图2-4(a)是最简单的串联振荡回路。图中,r是电感线圈L中的损耗电阻,r通常很小,可以忽略,C为电容。振荡回路的谐振特性可以从它们的阻抗频率特性看出来。对于图2-4(a)的串联振荡回路,当信号角频率为时,其串联阻抗为CLrCLrZ1jj1jS(2-1)第2章 高频电路基础回路电抗、回路阻抗的模|ZS|和辐角随变化的曲线分别如图2-4(b)、(c)和(d)所示。由图可知,当r;当0时,回路呈感性,|ZS|r;当=0时,感抗
18、与容抗相等,|ZS|最小,并为一纯电阻r,我们称此时发生了串联谐振,且串联谐振角频率0为 (2-2)串联谐振频率是串联振荡回路的一个重要参数。CLX1LC10第2章 高频电路基础图2-4 串联振荡回路及其特性第2章 高频电路基础U若在串联振荡回路两端加一恒压信号,则发生串联谐振时因阻抗最小,流过电路的电流最大,称为谐振电流,其值为 (2-3)rUI0第2章 高频电路基础 j1 1 j1 1 1j1 1 00000SS0QrLrCLZrrUZUII在任意频率下的回路电流与谐振电流之比为(2-4)I第2章 高频电路基础其模为(2-5)其中,(2-6)2002011QIICrrLQ001第2章 高频
19、电路基础图 2-5 串联谐振回路的谐振曲线第2章 高频电路基础称为回路的品质因数,它是振荡回路的另一个重要参数。根据式(2-5)画出相应的曲线如图2-5所示,称为谐振曲线。由图可知,回路的品质因数越高,谐振曲线越尖锐,回路的选择性越好。因此,回路品质因数的大小可以说明回路选择性的好坏。另外一个反映回路选择性好坏的参数矩形系数的概念将在后面给出。在高频中通常Q是远大于1的值(一般电感线圈的Q值为几十到一二百)。在串联回路中,电阻、电感、电容上的电压值与阻抗值成正比,因此串联谐振时电感及电容上的电压为最大,其值为电阻上电压值的Q倍,也就是恒压源的电压值的Q倍。发生谐振的物理意义是,此时,电容中储存
20、的电能和电感中储存的磁能周期性地转换,并且储存的最大能量相等。第2章 高频电路基础在实际应用中,外加信号的频率与回路谐振频率0之差=0表示频率偏离谐振的程度,称为失谐。当与0很接近时,(2-7)0000002020022 第2章 高频电路基础令(2-8)为广义失谐,则式(2-5)可写成(2-9)当保持外加信号的幅值不变而改变其频率时,将回路电流值下降为谐振值的时对应的频率范围称为回路的通频带,也称回路带宽,通常用B来表示。令式(2-9)等于 0.707,则可推得=1,从而可得带宽B0.707或B0.7为(2-10)0022ffQQ2011II2/1QffB07.022/1第2章 高频电路基础应
21、当指出,以上所用到的品质因数都是指回路没有外加负载时的值,称为空载 Q 值或 Q0。当回路有外加负载时,品质因数要用有载 Q 值或 QL 来表示,其中的电阻 r 应为考虑负载后的总的损耗电阻。串联振荡回路的相位特性与其辐角特性相反。在谐振时回路中的电流、电压关系如图2-6所示,图中与同相,和 分别为电感和电容上的电压。由图可知,和反相。UCUCU0ILULU第2章 高频电路基础 图2-6 串联回路在谐振时的电流、电压关系第2章 高频电路基础2)并联谐振回路串联谐振回路适用于电源内阻为低内阻(如恒压源)的情况或低阻抗的电路(如微波电路)。当频率不是非常高时,并联谐振回路应用最广。并联谐振回路是与
22、串联谐振回路对偶的电路,其等效电路、阻抗特性和辐角特性分别如图2-7(b)、(c)和(d)所示。第2章 高频电路基础并联谐振回路的并联阻抗为(2-11)我们也定义使感抗与容抗相等的频率为并联谐振频率0,令Zp的虚部为零,求解方程的根就是0,可得 式中,Q为回路的品质因数,有CLrCLrZj1jj1)j(p20111QLCCrrLQ001第2章 高频电路基础当Q1时,。回路在谐振时的阻抗最大,为一电阻R0 (2-12)我们还关心并联回路在谐振频率附近的阻抗特性,同样考虑高Q条件下,可将式(2-11)表示为(2-13)LC10CQLQCrLR00000pj1QCrLZ第2章 高频电路基础并联回路通
23、常用于窄带系统,此时与0相差不大,式(2-13)可进一步简化为(2-14)式中,=0。对应的阻抗模值与幅角分别为(2-15)(2-16)j12j1000pRQRZ20200p121|RQRZarctan2arctan0ZQ第2章 高频电路基础上述特性可以在图2-7中反映出来。在图2-7(b)的等效电路中,并联电阻R0是等效到回路两端的并联谐振电阻,电感和电容中没有损耗电阻。从图2-7(c)、(d)可以看出,Q值越高,阻抗和幅角在谐振频率附近变化就越快。对于并联谐振回路,若将阻抗值下降为的频率范围称为通频带B,则它与式(2-10)相同。2/0R第2章 高频电路基础图2-7 并联谐振回路及其等效电
24、路、阻抗特性和辐角特性(a)并联谐振回路;(b)等效电路;(c)阻抗特性;(d)辐角特性第2章 高频电路基础在图2-7(b)的等效电路中,流过L的电流是感性电流,它落后于回路两端电压90。是容性电流,超前于回路两端电压90。则与回路电压同相。谐振时与相位相反,大小相等。此时流过回路的电流正好就是流过 R0 的电流。由式(2-12)还可看出,由于回路并联谐振电阻 R0 为0L(或1/0C)的Q倍,并联电路各支路电流大小与阻抗成反比,因此电感和电容中的电流为外部电流的Q倍,即有 IL=IC=QI (2-17)图2-8表示了并联振荡回路中谐振时的电流、电压关系。LICIRILICIIRI第2章 高频
25、电路基础图2-8并联回路中谐振时的电流、电压关系第2章 高频电路基础当信号频率低于谐振频率,即0时,整个回路呈容性阻抗。图2-7(d)也表示出了此关系。应当指出,以上讨论的是高Q的情况。如果Q值较低时,并联振荡回路谐振频率将低于高Q情况的频率,并使谐振曲线和相位特性随着Q值而偏离。下面举一例说明简单并联振荡回路的计算。第2章 高频电路基础例 2-1 设一放大器以简单并联振荡回路为负载,信号中心频率fs=10 MHz,回路电容C=50 pF,(1)试计算所需的线圈电感值。(2)若线圈品质因数为Q=100,试计算回路谐振电阻及回路带宽。(3)若放大器所需的带宽B0.7=0.5 Hz,则应在回路上并
展开阅读全文