高三解三角形复习课课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《高三解三角形复习课课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高三解 三角形 复习 课件
- 资源描述:
-
1、章解三角形章解三角形(复习课)(复习课)BCAabc思考:何谓解三角形?思考:何谓解三角形?一般地,把三角形的三个角一般地,把三角形的三个角A A,B B,C C,及其,及其对边对边a a,b b,c c叫做三角形的叫做三角形的元素元素。已知三角形。已知三角形的几个元素求其他元素的过程叫的几个元素求其他元素的过程叫解三角形解三角形。BCAabc思考:如何判断两个三角形全等?思考:如何判断两个三角形全等?思考:三角形中角之间关系如何?边之间关思考:三角形中角之间关系如何?边之间关系如何?边角之间关系如何?系如何?边角之间关系如何?,?.角之间关系角之间关系.边之间关系边之间关系.边角关系边角关系
2、2(sinsinsinabcRRABC为三角形外接圆半径)2 sin(sin)22 sin(sin)22 sin(sin)2aaRAARbbRBBRccRCCR:sin:sin:sina b cABC正弦定理及其变形:正弦定理及其变形:ABCabcB2R 1、已知两角和任意一边,求其他的两边及角、已知两角和任意一边,求其他的两边及角.2、已知两角和其中一边的对角,求其他边角、已知两角和其中一边的对角,求其他边角.正弦定理解决的题型正弦定理解决的题型:变形变形变形变形边化为角边化为角角化为边角化为边2222222222cos2cos2cosabcbcAbacacBcababC222222222c
3、os2cos2cos2bcaAbcacbBacabcCab余弦定理及其推论:余弦定理及其推论:推论推论111sinsinsin222ABCSabCbcAacB111222ABCabcSahbhchABCabcha1、已知三边求三角、已知三边求三角.2、已知两边和他们、已知两边和他们的夹角,求第三边和的夹角,求第三边和其他两角其他两角.余弦定理解决的题型余弦定理解决的题型:角化为边角化为边如图,在如图,在ABC中,已知中,已知B45,D是是BC边上的一点,边上的一点,AD10,AC14,DC6,求,求AB的长的长【思路点拨】已知三角形【思路点拨】已知三角形ACD三边的长,可用三边的长,可用余弦定
4、理求余弦定理求ADC,在,在ABD中再用正弦定理求中再用正弦定理求解解.603,10bCca,求边,若在在ABC中中,类型一:利用正、余弦定理解三角形类型一:利用正、余弦定理解三角形类型一:利用正、余弦定理解三角形类型一:利用正、余弦定理解三角形 点评:一般情况下,点评:一般情况下,1.正弦定理可以用来解两种类型的三角问题:正弦定理可以用来解两种类型的三角问题:(1)已知两角和任意一边;)已知两角和任意一边;(2)已知两边和其中一边的对角。)已知两边和其中一边的对角。2.余弦定理可解以下两种类型的三角形:余弦定理可解以下两种类型的三角形:(1)已知三边;)已知三边;(2)已知两边及夹角。)已知
展开阅读全文