数学归纳法及其应用PPT课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《数学归纳法及其应用PPT课件.ppt》由用户(云一就是云一)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 归纳法 及其 应用 PPT 课件
- 资源描述:
-
1、第十二章第十二章 极限与导数极限与导数第 讲(第二课时)(第二课时)题型题型3 用数学归纳法探求数列的通项公式用数学归纳法探求数列的通项公式1.已知数列an满足:a1=1,a2=,an(an+1-1)=n(an+1-an)(n2),求数列an的通项公式.解:由已知可得因为 a1=1,a2=,所以 由此猜想:14 11(2).nnnnaanna 14232127aaa,343213-10aaa,1.3-2ann 证明:(1)当n=1时,结论成立.(2)假设当n=k时结论成立,即则当n=k+1时,所以当n=k+1时,结论也成立.综合(1)(2)知,数列an的通项公式是1113 12a ,1.32k
2、ak 121111321321321111.32131131312kkkkkakkakakkkkkkkkkkkk 1(*).32nanNn 点评:“归纳猜想证明”是求数列的通项公式与前n项和公式的常用方法,也是近几年高考理科数学试卷中数列问题的一个主要类型,应引起足够的重视.数列an满足Sn=2n-an(nN*).(1)计算a1,a2,a3,a4,并由此猜想通项公式an;(2)用数学归纳法证明(1)中的猜想.解:(1)当n=1时,a1=S1=2-a1,所以a1=1;当n=2时,a1+a2=S2=22-a2,所以a2=;当n=3时,a1+a2+a3=S3=23-a3,所以a3=;当n=4时,a1
3、+a2+a3+a4=S4=24-a4,所以a4=.由此猜想3274158121(N*).2nnnan (2)证明:当n=1时,a1=1,结论成立.假设n=k(k1且kN*)时,结论成立,即 那么当n=k+1(k1且kN*)时,ak+1=Sk+1-Sk=2(k+1)-ak+1-2k+ak=2+ak-ak+1.所以2ak+1=2+ak,所以 这表明n=k+1时,结论也成立.由知,猜想 成立.121.2kkka 1112122212,222kkkkkkaa 121(*)2nnnanN 题型题型4 用数学归纳法探求数列的有关性质用数学归纳法探求数列的有关性质 2.已知两个数列an、bn满足:a1=2,
4、b1=-1,且an=an-1b=,试推测an+bn的变化规律,并证明你的结论.解:当n=1时,a1+b1=1.因为 所以a2+b2=1,由此猜测:an+bn=1.证明:(1)当n=1时,a1+b1=1显然成立.12(2)11nnnbbna,1221 22112133bbaa ba,(2)假设当n=k时,ak+bk=1,即bk=1-ak成立,则ak+1+bk+1=akbk+1+bk+1=(ak+1)bk+1 所以当n=k+1时,结论成立.综合(1)(2)知,对任意nN*,都有an+bn=1.故an+bn=1,为定值.211.11kkkkkbbaaa 点评:探求数列中的有关性质,一般是先观察n=1
5、,2,3时的命题的性质,对这几项进行归纳、分析,猜想出一般性的结论,然后用数学归纳法来证明.已知数列an是公差不为零的等差数列,且a4是a2与a8的等比中项,设bn=anan+1an+2,Sn为数列bn的前n项和,试推断是否存在常数p,使对一切nN*都有pa1Sn=bnan+3成立?说明你的理由.解:设数列an的公差为d(d0).由已知,得a2a8=a42,所以(a1+d)(a1+7d)=(a1+3d)2,则a1=d,所以an=nd.(1)当n=1时,所以4a1S1=b1a4成立.(2)假设当n=k时,4a1Sk=bkak+3成立,即 则1441114b aaa Sa,31.4kkkb aSa
展开阅读全文