书签 分享 收藏 举报 版权申诉 / 42
上传文档赚钱

类型最新人教版高中数学选修导数及其应用课件.ppt

  • 上传人(卖家):晟晟文业
  • 文档编号:4381247
  • 上传时间:2022-12-04
  • 格式:PPT
  • 页数:42
  • 大小:2.53MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《最新人教版高中数学选修导数及其应用课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    新人 高中数学 选修 导数 及其 应用 课件 下载 _其他版本_数学_高中
    资源描述:

    1、第一章第一章 导数及其应用导数及其应用 2导数的意义(1)几何意义:函数yf(x)在点x0处的导数f(x0)就是曲线yf(x)在点P(x0,f(x0)处的切线的斜率k,即kf(x0)(2)物理意义:函数ss(t)在点t处的导数s(t),就是当物体的运动方程为ss(t)时,运动物体在时刻t时的瞬时速度v,即vs(t)而函数vv(t)在t处的导数v(t),就是运动物体在时刻t时的瞬时加速度a,即av(t)3利用导数的几何意义求切线方程 利用导数的几何意义求切线方程时关键是搞清所给的点是不是切点,常见的类型有两种,一是求“在某点处的切线方程”则此点一定为切点,先求导,再求斜率代入直线方程即可得;另一

    2、类是求“过某点的切线方程”,这种类型中的点不一定是切点,可先设切点为Q(x1,y1),则切线方程为yy1f(x1)(xx1),再由切线过点P(x0,y0)得 y0y1f(x1)(x0 x1)又y1f(x1)由求出x1,y1的值 即求出了过点P(x0,y0)的切线方程 分析根据导数的几何意义可知,欲求yf(x)在点(1,f(1)处的切线斜率,即求f(1),即可得所求斜率 例2已知函数f(x)ax33x26ax11,g(x)3x26x12,直线m:ykx9,又f(1)0.(1)求a的值;(2)是否存在实数k,使直线m既是曲线yf(x)的切线,又是yg(x)的切线?如果存在,求出k的值;如果不存在,

    3、请说明理由 分析直线ykx9过定点(0,9),可先求出过点(0,9)与yg(x)相切的直线方程,再考查所求直线是否也是曲线yf(x)的切线 当x0时,f(0)11,此时切线方程为y12x11;当x1时,f(1)2,此时切线方程为y12x10.所以y12x9不是公切线 由f(x)0,得6x26x120,即有x1,或x2.当x1时,f(1)18,此时切线方程为y18;当x2时,f(2)9,此时切线方程为y9.所以y9是公切线 综上所述,当k0时,y9是两曲线的公切线.1.利用导数研究函数的单调区间是导数的主要应用之一,其步骤为:(1)求导数f(x);(2)解不等式f(x)0或f(x)0总成立,则该

    4、函数在(a,b)上单调递增;f(x)0或f(x)0的x的取值范围为(1,3)(1)求f(x)的解析式及f(x)的极大值;(2)当x2,3时,求g(x)f(x)6(m2)x的最大值 解析(1)由题意知f(x)3ax22bxc 3a(x1)(x3)(a0),在(,1)上f(x)0,f(x)是增函数,在(3,)上f(x)0,f(x)是减函数 因此f(x)在x01处取极小值4,在x3处取得极大值(2)g(x)3(x1)(x3)6(m2)x 3(x22mx3),g(x)6x6m0,得xm.当2m3时,g(x)maxg(m)3m29;当m0(或f(x)0(或f(x)0),求出参数的取值范围后,再令参数取“

    5、”,看此时f(x)是否满足题意 例5设函数f(x)2x33ax23bx8c在x1及x2时取得极值(1)求a、b的值;(2)若对于任意的x0,3,都有f(x)0;当x(1,2)时,f(x)0.所以当x1时,f(x)取极大值,f(1)58c.又f(0)8c,f(3)98c,则当x0,3时,f(x)的最大值为f(3)98c.因为对于任意的x0,3,有f(x)c2恒成立,所以98cc2,解得c9.因此c的取值范围是(,1)(9,).利用导数求函数的极大(小)值,求函数在区间a,b上的最大(小)值或利用求导法解决一些实际问题是函数内容的继续与延伸,这种解决问题的方法使复杂的问题简单化,因而已逐渐成为高考

    6、的又一新热点 1利用导数求实际问题的最大(小)值的一般方法:(1)细致分析实际问题中各个量之间的关系,正确设定所求最大或最小值的变量y与自变量x,把实际问题转化为数学问题,即列出函数关系yf(x),根据实际问题确定yf(x)的定义域(2)求f(x),令f(x)0,得出所有实数的解(3)比较导函数在各个根和区间端点处的函数值的大小,根据实际问题的意义确定函数的最大值或最小值 2利用导数求实际问题的最大(小)值时,应注意的问题:(1)求实际问题的最大(小)值时,一定要从问题的实际意义去考查,不符合实际意义的值应舍去(2)在实际问题中,由f(x)0常常仅解到一个根,若能判断函数的最大(小)值在x的变

    7、化区间内部得到,则这个根处的函数值就是所求的最大(小)值 例6某分公司经销某种品牌产品,每件产品的成本为3元,并且每件产品需向总公司交a元(3a5)的管理费,预计当每件产品的售价为x元(9x11)时,一年的销售量为(12x)2万件(1)求分公司一年的利润L(万元)与每件产品的售价x(元)的函数关系式;(2)当每件产品的售价为多少元时,分公司一年的利润最大,并求出L的最大值Q(a)利用定积分求曲边梯形的面积、变力做功等问题,要注意用定积分求曲边梯形的面积的步骤:(1)画出图形;(2)解方程组确定积分区间;(3)根据图形的特点确定积分函数;(4)求定积分 分析本题考查定积分知识 例8计算由y2x,yx2围成的图形的面积

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:最新人教版高中数学选修导数及其应用课件.ppt
    链接地址:https://www.163wenku.com/p-4381247.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库